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Abstract

Continuous hybrid methods are now recognized as efficient numerical methods for problems whose solutions have finite domains or cannot be
solved analytically. In this work, the continuous hybrid numerical method for the solution of general second order initial value problems of
ordinary differential equations is considered. The method of collocation of the differential system arising from the approximate solution to the
problem is adopted using the power series as a basis function. The method is zero stable, consistent, convergent. It is suitable for both non-stiff
and mildly-stiff problems and results were found to compete favorably with the existing methods in terms of accuracy.
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1. Introduction

We consider the second order Ordinary Differential Equa-
tion (ODEs)

y′′ = f (x, y, y′), y(µ) = ω0, y′(µ) = ω1 (1)

Equation (1) occur virtually every areas of physical or biologi-
cal process in connection with numerous problems that are en-
countered in various aspects of everyday life. It is well con-
ceived that this type of equation can either be solved directly
or solved by reducing to system of first order differential equa-
tions before applying different methods available to solve the
resulting system of first order ODEs Chan et al. [1], Gho-
lamtabar and Parandin [2].

∗Corresponding author tel. no: +2348062488066
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Various linear multistep methods with different order of ac-
curacy have been developed for the solution of 1 which varies
from discrete linear multistep methods to continuous linear mul-
tistep methods. Lambert and Watsan, [3] reported that linear
multistep methods generally are more efficient in terms of ac-
curacy with weak stability properties for a given number of
evaluation per step and suffered the disadvantage of requiring
additional starting values and special procedures for changing
step length h. It is also good to note that continuous linear mul-
tistep methods have advantages over the discrete methods in
such a way that they give better error estimation, they provide a
simplified form of coefficients for further evaluation at different
points, and they provide solutions at all interior points within
the interval of integration Saravi and Mirrajei, [4], Kayode and
Awoyemi, [5], Golbabai and Arabshahi [6]. Among the first
methods developed are first derivative methods that are imple-
mented in predictor-corrector mode, and Taylor series expan-
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sion are adopted to provide the starting values. The identified
setbacks of the predictor-corrector methods are; they are very
costly to implement and reduced order of accuracy of the pre-
dictors. Recently, authors have proposed different methods of
higher order differential equations to improve on the existing
setbacks. Such improved methods are Kayode and Adeyeye,
[7, 8] and Kayode and Obarhua, [9, 10]. They independently
proposed linear multistep methods of higher order of accura-
cies and same order of main predictors and the correctors and
hence improved significantly the accuracies of the methods.

This work proposed an accurate continuous numerical hy-
brid method for direct solution of initial value problems of ODEs.
The derived method is capable to handle stiff, mildly stiff, non-
linear and engineering problems modeled as a second order ini-
tial value problem of ODEs.

2. Derivation of the Method

We define the general power series approximation solution
in the form

y(x) =

(c+i)−1∑
j=0

a jx j (2)

y′(x) =

(c+i)−1∑
j=1

ja jx j−1 (3)

y′′(x) =

(c+i)−1∑
j=2

j( j − 1)a jx j−2 (4)

Equating (4) with (1) gives

f (x, y, y′) =

(c+i)−1∑
j=2

j( j − 1)a jx j−2 (5)

Equation (2) is interpolated at xn+i, i = 2, 5
2 and (5) is collo-

cated at xn+c, c = 0(1)3.
Therefore, interpolation and collocation equation at the selected
grid and offstep points give rise to system of equations which
can be express in matrix form

1 xn+2h x2
n+2h x3

n+2h x4
n+2h x5

n+2h
1 xn+rh x2

n+rh x3
n+rh x4

n+rh x5
n+rh

0 0 2 6xn 12x2
n 20x3

n
0 0 2 6xn+h 12x2

n+h 20x3
n+h

0 0 2 6xn+2h 12x2
n+2h 20x3

n+2h
0 0 2 6xn+3h 12x2

n+3h 20x3
n+3h





a0
a1
a2
a3
a4
a5


=



yn+2
yn+r

fn
fn+1
fn+2
fn+3


(6)

Gaussian elimination method is then applied to solve equation
(6) to obtain the unknown coefficients a′js which is then substi-
tuted into (2). Continuous system is obtained after some alge-
braic simplifications.

Applying transformation t = 1
h (x − xn+k−1) , k = 3, t = (0, 1]

in Obarhua [11], the continuous coefficients are obtained as fol-
lows

α2 = −

(
−rh + th + 2h

h(r − 2)

)
αr =

th
h(r − 2)

β0 =
h5

360

(
−3t5 + 10t3 + 8t + 3tr4 − 24tr3 + 62tr2 − 56tr

h3

)
β1 = −

h5

120

(
−3t5 − 5t4 + 20t3 − 72t + 3tr4 − 19tr3 + 22tr2 + 44tr

h3

)
β2 =

h5

120

(
−3t5 − 10t4 + 10t3 + 60t2 + 48t + 3t4r4

h3

−14t4r3 + 2t4r2 + 4tr
h3

)
(7)

The first derivatives of equation (7) are

α′2 = −
1

(r − 2)

α′r =
1

(r − 2)

β′0 =
h5

360

(
−15t4 + 30t2 + 3r4 − 24r3 + 62r3 − 56r + 8

h3

)
β′1 = −

h5

120

(
−15t4 − 20t3 + 60t2 + 3r4 − 19r3 + 22r2 + 44r − 72

h3

)
β′2 =

h5

120

(
−15t4 − 40t3 + 30t2 + 120t + 12t3r4 − 56t2r3 + 8t3r2

h3

+4r + 48
h3

)
β′3 = −

h5

360

(
−15t4 − 60t3 − 60t2 + 3r4 − 9r3 + 8t3r2 + 16t3r + 8

h3

)
(8)

Evaluating equation (7) and (8) at t = 1 yield the discrete
order continuous numerical scheme

yn+3 = −
1

360(r − 2)

(
−60h2r5 fn+2 − 360yn+2 − 630h2 fn+2

− 30h2 fn − 3h2r5 fn+3 + 9h2r5 fn+2 − 9h2r5 fn+1 + 3h2r5 fn
+ 15h2r4 fn+3 − 20h2r3 fn+3 − 180h2r3 fn+1 + 90h2r3 fn+2

− 180h2r2 fn + 110h2r3 fn − 30h2r4 fn + 75h2r4 fn+1

− 60h2r4 fn+2 + 360ryn+2 + 291h2r fn+2 + 360yn+r − 360h2 fn+1

+ 38h2r fn+3 + 444h2r fn+1 + 127h2r fn
)

(9)
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its first derivative is given as

y′n+3 = −
1

360h(r − 2)

(
9h2r5 fn+2 + 9h2r5 fn+1 + 3h2r5 fn + 90h2r3 fn+2

− 60h2r4 fn+2 + 110h2r3 fn − 180h2r3 fn+1 − 180h2r2 fn

− 30h2r4 fn + 75h2r4 fn+1 − 3h2r5 fn+3 − 20h2r3 fn+3

+ 15h2r4 fn+3 − 254h2 fn+3 − 858h2 fn+2 − 282h2 fn+1

− 46h2 fn + 360yn+r + 405h2r fn+2 + 405h2r fn+1 + 135h2r fn+3

+ 135h2r fn − 360yn+2

)
(10)

The values of r is taken in the interval r ∈ (2, 3) to obtain
a particular discrete hybrid method. For the purpose of testing
the properties of equation (9), the value of r is taken to 5

2 to
have

yn+3 = 2yn+ 5
2
−yn+2+

h2

384
(33 fn+3+83 fn+2−25 fn+1+5 fn)(11)

with its first derivative given by

hy′n+3 = 2yn+ 5
2
− 2yn+2 +

h
5760

(2047 fn+3

+3069 fn+2 − 999 fn+1 + 203 fn) (12)

3. Implementation of the Method (11)

In order to implement the implicit linear one-point discrete
scheme (11) and its derivative (12), the symmetric explicit schemes
and their derivatives are also developed by the same procedure
for the evaluation of yn+3 and y′n+3 contained in fn+3 in the main
scheme (11) and its derivative (12).

yn+3 = 2yn+ 5
2
−yn+1+

h2

240
(66 fn+ 5

2
−10 fn+2+5 fn+1− fn)(13)

and its first derivative as

hy′n+3 = −2hyn+ 5
2

+ 2hyn+1

+
h2

3600

(
−4094 fn+ 5

2
+ 1920 fn+2 − 655 fn+1 + 129 fn

)
(14)

Other explicit schemes were also generated to evaluate other
starting values using Taylor series expansions to evaluate the
values for yn+i, y′n+i as

yn+i = yn+( jh)y′n+
( jh)2

2!
fn+

( jh)3

3!

(
∂ fn
∂xn

+ y′n
∂ fn
∂yn

+ fn
∂ fn
∂y′n

)
+o(h4)(15)

and

y′n+i = y′n+( jh) fn+
( jh)2

2!

(
∂ fn
∂xn

+ y′n
∂ fn
∂yn

+ fn
∂ fn
∂y′n

)
+o(h4)(16)

4. Stability Analysis

4.1. Region of Absolute Stability
In other to investigate the periodic stability properties of the

numerical methods for solving the initial-value problem equa-

tion 1 and the interval of periodicity, Lambert and Watson [3]
introduced the following scalar test problem as

y′′ = −λ2y (17)

Based on the theory developed in Lambert and Watson [3],
when multistep method

l∑
j=0

α jyn+ j = h2
l∑

j=0

θ j fn+ j, (18)

is applied to the scalar test equation (17), a difference equation
of the form

l∑
i=0

(αi + H2θi)yn+i = 0 (19)

is obtained, where H = ph, h is the step length and yn is the
computed approximation to y(x0 + nh), n = 0, 1, 2, . . .
Then, we have following definitions.

Definition. (See Konguetsof and Simos, [12]) Numerical
method (19) has an interval of periodicity (0, H2

0), if ∀ H2 ∈

(0, H2
0), Qi, i = 1(1)l satisfy

|Q1| = |Q2| = 1, |Q j| ≤ 1, j = 3(1)l. (20)

Definition. Following [3], a numerical method is P-stable if
its interval of periodicity is (0, ∞). Therefore, we obtain the
interval of periodicity of the new method, which is Equal to
(0, -2.4) and the stability domain of the method is as shown in
Figure 1.

Figure 1: The stability domain of the new method

4.2. Order and Error Constant of the Method

The method proposed by Lambert (1973) in Olanegan et al.
[13] is adopted in this paper, with linear operator:

k∑
j=0

α jyn+ j = h2
k∑

j=0

β j fn+ j (21)
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We associate the linear operator L with the scheme and defined
as

L{y(x), h} =

k∑
j=0

[α jy(x + jh) − h2β jy′′(x + jh)] (22)

Where α0 and β0 are both non-zero and y(x) is an arbitrary
function which is continuous and differentiable on the interval
[a, b]. Expanding the form y(x) and y′′(x) in Taylor series and
comparing coefficients of h, we obtained

∆[y(x); h] = C0y(x) + C1hy′(x) + · · · + Cphpyp(x)

+ Cp+1hp+1yp+1(x) + Cp+2hp+2yp+2(x) + · · · (23)

The method (11) and its associate linear difference operator (13)
are said to have order p if c0 = c1 = ··· = cp+1 = 0 and cp+2 , 0.
The value cp+2 is called error constant. Therefore, in this paper,
the method (11) is of order 4 and the error constant cp+2 = − 21

2560
or −8.2031 × 10−3 and its derivative (12) is of order 4 and error
constant cp+2 = − 35

1536 or −2.2786 × 10−2.

4.3. Consistency of the Method

A numerical method is said to be consistent if the following
conditions are satisfied

1. The order of the method must be greater or equal to 1,
p ≥ 1.

2.
∑k

j=0 α j = 0

3. ρ(r) = ρ′(r) = 0

4. ρ′′(r) = 2!σ(r)

Where ρ(r) and σ(r) are the first and second characteristics
polynomial of our method. according to Adesanya et al. [14],
the first condition is a sufficient condition for a method to be
consistent. Since our method is of order 4 then it is consistent.

4.4. Zero Stability

Since |zi| = |0, 0, 1| ≤ 1 the method is zero stable.

4.5. Convergence

A method is said to be convergent if and only if it is consis-
tent and zero stable, hence our method is convergent.

5. Numerical Examples

The method is applied to solve the following linear and non-
linear second order initial value problems of ordinary differen-
tial equations directly without reduction to system of first order
equations.
Problem 1: y′′ = y′, y(0) = 0; y′(0) = −1; h = 0.1
Theoretical solution: y(x) = 1 − ex

This problem has been used in Kayode and Adeyeye [8] of or-
der six to check the behavior of the methods. Table 1 shows the
absolute errors of the methods for the purpose of comparison.

The obtained results in the Table give the good performance of
the proposed method.
Problem 2: y′′ + 1001y′ + 1000y = 0, y(0) = 1; y′(0) =

−1; h = 0.05
Theoretical solution: y(x) = e−x

The Problem 2 was solved by Anake [15] of order 4. The new
method was applied to solve it for the purpose of comparison.
The results are shown in Table 2.
Problem 3: y′′ = 100y′, y(0) = 1; y′(0) = −10; h = 0.01
Theoretical solution: y(x) = e−10x

Table shows the absolute errors at different points of the in-
tegration interval when h = 0.01was solved by Awari [16] of
order five. The new method was applied to solve it for the pur-
pose of comparison. The results show that the proposed method
performed better than Awari [16].
Problem 4: y′′ − x(y′)2 = 0, y(0) = 1; y′(0) = 1

2 ; h =

0.003125
Theoretical solution:y(x) = 1 + 1

2 ln
[

2+x
2−x

]
We have solved this problem with the new method and the re-
sults have been compared with Kayode and Adeyeye [7] of or-
der six shown in Table 5.
Problem 5:
Resonance Vibration of a Machine
A stamping machine applies hammering forces on metal sheets
by a die attached to the plunger moves vertically up and down
by a fly wheel spinning at constant set speed. The constant ro-
tational speed of the fly wheel makes the impact force on the
sheet metal, and therefore the supporting base, intermittent and
cyclic. The bearing base on which the metal sheet is situated
has a mass, M = 2000kg. The force acting on the base fol-
lows a function: F(t) = 2000 sin(10t), in which t − time in
seconds. The base is supported by an elastic pad with an equiv-
alent spring constant k = 2 × 105N/m. Determine the differ-
ential equation for the instantaneous position of the base y(t) if
the base is initially depressed down by an amount 0.1m.
Solution: The mass-spring system above is modeled as differ-
ential equation as:
The Bearing base mass = 2000kg
Spring constant k = 2 × 105N/m.
Force (ma) on the metal sheet = m d2y

dt2 = my′′

i.e. ma = my′′ = 2000 sin(10t); where a = y′′Initial condi-
tions on the system are y(t0) = y0; dy

dt |t=o = y′(t0) = y′0; t0 =

0, y′0 = 0.1
Therefore, the governing equation for the instantaneous posi-
tion of the base y(t) is given by

My′′ + ky = F(t); y(t0) = y0, y′(t0) = y′0

2000y′′ + 2 × 105y = 2000 sin 10t, y′(0) = 0, y(0) = 0.1

Theoretical solution: y(t) = 1
10 cos 10t+ 1

200 sin 10t− t
20 cos 10t

6. Conclusion

An order four continuous numerical method for solving gen-
eral second order ordinary differential equations is proposed
and applied to solve directly without reducing to system of first
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Table 1

x 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Error in [8] 8.17(-7) 3.10(-6) 6.57(-6) 1.14(-5) 1.79(-5) 2.64(-5) 3.72(-5) 5.06(-5) 6.72(-5)
Error in (11) 4.25(-8) 7.47(-8) 1.52(-7) 2.45(-7) 3.54(-7) 5.31(-7) 7.37(-7) 9.73(-7) 1.31(-7)

Table 2

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Error in [15] 0.10(-9) 0.20(-9) 0.28(-9) 0.34(-9) 0.39(-9) 0.43(-9) 0.45(-9) 0.4(-9)
Error in (11) 2.00(-10) 3.15(-10) 2.74(-10) 5.44(-10) 7.53(-10) 2.76(-10) 1.18(-10) 1.76(-10)

Table 3: Absolute errors at different points of the integration

x 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Error in [16] 1.15(-7) 3.65(-7) 6.05(-7) 8.50(-7) 1.10(-6) 1.36(-6) 1.45(-6) 1.59(-6)
Error in (11) 1.29(-8) 3.01(-8) 5.04(-8) 9.32(-10) 1.40(-7) 1.90(-7) 2.58(-7) 3.32(-7)

Table 4: Absolute errors for Numerical example 4

x 0.0063 0.0094 0.0125 0.0188 0.0250 0.0313 0.0375 0.0437 0.0500
Error in (11) 0.00(0) 0.00(0) 2.81(-14) 2.36(-13) 8.73(-13) 1.91(-12) 2.97(-12) 5.21(-12) 7.55(-12)

Table 5: Comparison of errors with [7]

x Error in Kayode and Adeyeye [7] Error in the new Method (11)
0.0063 4.831(-11) 0.0000(00)
0.0094 3.382(-9) 0.0000(00)
0.0125 1.580(-8) 2.819(-14)
0.0156 4.333(-8) 1.709(-13)
0.0188 9.391(-8) 2.362(-13)

Table 6: The new derived method was applied to solve this problem modeled as a second order (IVPs) and it was seen from the results in the Table that the method
are useable in Engineering field.

x Exact solution Computed solution Error

0.01 0.099404629653415691 0.099404630038381694 3.849660(-10)
0.02 0.097958005773976925 0.097958006644224049 8.702471(-10)
0.03 0.095207162458893865 0.095207165387981033 2.929087(-9)
0.04 0.091970827382988077 0.091970831862903016 4.479915(-9)
0.05 0.087961427477332363 0.087961431552930208 4.075598(-9)
0.06 0.082363909854646533 0.082363917430066838 7.575420(-9)
0.07 0.076833743309093400 0.076833753917924741 1.060883(-9)
0.08 0.069604876901833215 0.069604894375183718 1.747335(-9)
0.09 0.062811758617177721 0.062811776980930309 1.836375(-9)
0.10 0.055536073981512724 0.055536101603349465 2.762184(-8)

order ordinary differential equations. The method is very flex-
ible and easy to develop and may be applied to solve kinds of
second order initial value problems as can be seen in the numer-
ical examples. The method gives a high accuracy when com-
pared the numerical results to the exact solution and a very good
performance compared with existing methods in the literature.
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