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Abstract

In this paper, a one-step block of optimized hybrid schemes for the numerical integration of second-order initial value problems (IVP) of ordinary
differential equations (ODE) is constructed via collocation techniques. The developed scheme is obtained by considering two intra-step nodal
points as hybrid points, which are chosen in order to achieve optimized errors of the main formulae approximating the solution such that 0 < v1 <
v2 < 1 where v1 and v2 are defined as hybrid points. The characteristics of the developed scheme are analyzed. Application of the new scheme on
some second-order IVPs shows the accuracy and effectiveness of the scheme compared with some existing methods.
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1. Introduction

The use of collocation techniques that are based on power
series as basis function for the formation of multi-step schemes
has gained research interests over the years [1–7]. The devel-
opment of optimized hybrid schemes based on the selection of
hybrid points, in such a way that the approximated solution of
the given higher order ODEs is close to the exact solution of the
said ODEs, is a recent technique that should be upheld by nu-
merical analysts [5, 6]. This paper is on the numerical solution
of the second-order IVPs of the form:

µ′′ = g(t, µ, µ′), t ∈ [t0, tN] , µ(t0) = µ0, µ
′(t0) = µ′0, (1)

∗Corresponding author: Tel. No.: +234-706-533-8323.
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where t0 and tN represent the start and end points of the inte-
gration interval, respectively, µ0 and µ′0 are real constants and
g(t, µ, µ′) is a continuous real function. Equation (1) often arises
in Science and Engineering fields such as molecular dynam-
ics, electronics, celestial mechanics, astrophysics, mathemati-
cal modeling and semi-discretization of wave equations. The
IVP in equation (1) can be solved directly or solved by reduc-
ing it to a system of first-order ODEs before applying different
numerical methods to solve the resulting system of first-order
ODEs [8–10].

Various researchers have developed numerical schemes for
the solution of equation (1) such as Adeyefa [3, 11], Anake
[12], Obarhua and Adegboro [13], Bilesanmi et al. [14],
Kuboye [15] and Mohammed [16, 17] to mention a few. Among
the first methods developed are the first derivative methods that
are implemented in predictor-corrector mode and Taylor series
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expansion are used to provide the starting value. Predictor-
corrector schemes are very costly to implement and have re-
duced order of accuracy of the predictor.

This study proposes an optimized one-step hybrid block
method for the direct solution of second-order initial value
problems of ordinary differential equations of the form given
in equation (1). The developed scheme is capable of proffering
numerical solution to linear and non-linear second-order initial
value problems.

2. Construction of the optimized one-step block hybrid
scheme

The solution of equation (1) is assumed on an interval
[tn, tn+1] which is locally approximated by a polynomial of the
form

µ(t) =
p+q−1∑

r=0

ϕrtr, (2)

with corresponding derivative as

µ′(t) =
p+q−1∑

r=1

rϕrtr−1, (3)

where p and q are the interpolation and collocation points, re-
spectively. The two hybrid points (v1 and v2) are considered in
such a way that 0 < v1 < v2 < 1 holds [5]. Interpolating equa-
tion (2) and collocating equation (3) at given grid points give

µn+ j = µ(tn+ j), j = 0, (4)

µ′n+ j = µ
′(tn+ j), j = 0, (5)

µ′′n+ j = g(tn+ j), j = 0, v1, v2, 1, (6)

where µn+ j and gn+ j are approximations for µ(tn+ j) and µ′′(tn+ j),
respectively. The system of six equations in equations (4), (5)
and (6) is written in compact form as

AB = G, (7)

where

A =



1 tn t2
n t3

n t4
n t5

n
0 1 2tn 3t2

n 4t3
n 5t4

n
0 0 2 6tn 12t2

n 20t3
n

0 0 2 6tn+v1 12t2
n+v1

20t3
n+v1

0 0 2 6tn+v2 12t2
n+v2

20t3
n+v2

0 0 2 6tn+1 12t2
n+1 20t3

n+1


,

B =
[
ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5

]T ,

and
G =

[
µn, µ

′
n, gn, gn+v1 , gn+v2 , gn+1

]T .

Solving equation (7) simultaneously gives the corresponding
coefficients of ϕr, r = 0(1)5. Substituting the resulting coef-
ficients ϕr, r = 0(1)5 into equation (2) and its derivatives yields
a continuous implicit scheme of the form

αzµn+z = α0µn + hβ10µ
′
n + h2

1∑
j=0

ρ jgn+ j

+ h2
2∑

j=1

ρv j gn+v j , z = v1, v2, 1. (8)

To obtain the approximate values of v1 and v2 hybrid points,
one optimizes the local truncation errors of one of the schemes
in equation (8) and ensures that the hybrid points satisfy the
interval 0 < v1 < v2 < 1 [5], specifically we chose µn+1. To get
the local truncation error, one expands the Taylor series about
the point tn of the scheme to obtain

L[y(tn+1), h] =
h6µ(6)(tn)Q1

1440
+ O(h7), (9)

where

Q1 = −5v1v2 + 2v1 + 2v2 − 1 = 0, 0 < v1 < v2 < 1. (10)

Imposing that the principal term (Q1) in the local truncation
error of (9) is zero. We use equation (10) and its constraint to
scan for v1 and v2 such that the scheme attains order five and
yields the solution as v1 =

1
4 and v2 =

2
3 as possible solution.

The discrete scheme and its derivative derived by evaluating
equation (7) as well as its derivative at grid and non-grid points(

1
4 ,

2
3 , 1

)
are given in equations (11) and (12). These schemes

are used to form a block of hybrid method and its derivative
method as:

µn+ 1
4

µn+ 2
3

µn+1


=


1

1

1


[
µn

]
+


1
4

2
3

1


[

hµ′n
]

+


0 0 4095

230400

0 0 930
18225

0 0 135
1800




h2gn− 2

3

h2gn− 1
4

h2gn


+


3664

230400 − 729
230400

170
230400

2816
18225

324
18225 − 20

18225

512
1800

243
1800

10
1800




h2gn+ 1

4

h2gn+ 2
3

h2gn+1


.

(11)

Note that h2gn− 2
3

and h2gn− 1
4

are multiplying the value zero in
the 3 × 3 matrix in the second line of equation (11) and both
functions will vanish. This is the reason both functions are not
seen in equation (8). The first derivative block methods are
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given in equation (12).

hµ′
n+ 1

4

hµ′
n+ 2

3

hµ′n+1


=


1

1

1


[

hµ′n
]
+


0 0 2325

23040

0 0 75
1215

0 0 15
180




h2gn− 2

3

h2gn− 1
4

h2gn


+


3872

23040 − 567
23040

130
23040

512
1215

243
1215 − 20

1215

64
180

81
180

20
180




h2gn+ 1

4

h2gn+ 2
3

h2gn+1


.

(12)

Equations (11) and (12) form the One-step Block Scheme with
Optimal Hybrid points (OBSOH) developed for the direct ap-
proximation of linear and non-linear second-order IVPs (1).

3. Analysis of OBSOH

In this section, the properties of the derived method are ex-
amined.

3.1. The error constant and order of the method
The local truncation error associated with the derived meth-

ods can be defined as the linear difference operator [18]:

L[µ(tn); h] =
∑1

j=0 α jµ(tn + jh) − hβ10µ
(′)(tn)

−h2 ∑1
j=0 ρ jµ

′′(tn + jh) − h2 ∑2
j=1 ρv jµ

′′(tn + (v j)h).
(13)

Assuming that µ(tn) is sufficiently differentiable, then using
Taylor series expansion on µ(tn + jh),µ′(tn + jh) and µ′′(tn + jh)
about tn, we have

µ(tn + jh) =
∞∑

m=0

( jh)m

m!
µ(m)(tn),

µ′(tn + jh) =
∞∑

m=1

( jh)m

m!
µ(m+1)(tn),

µ′′(tn + jh) =
∞∑

m=2

( jh)m

m!
µ(m+2)(tn).

Substituting µ(tn + jh), µ′(tn + jh) and µ′′(tn + jh) in equation
(13) we obtain

L[µ(tn); h] = C0µ(tn) +C1hµ′(tn) +C2h2µ′′(tn)
+C3h3µ′′′(tn) + ... +Cm+2hm+2µ(m+2)(tn) + . . . (14)

where Cm,m = 0, 1, 2, . . . are constants given as:

C0 =
∑1

j=0 α j +
∑2

j=1 αv j ,

C1 =
[∑1

j=0 jα j +
∑2

j=1 v jαv j

]
− β10,

...

Cm+2 = 1
(m+2)!

[∑1
j=0 jm+2α j +

∑2
j=1(v j)m+2αv j

]
− 1

(m+1)!

[∑1
j=0 jm+1β1 j +

∑2
j=1(v j)m+2β1v j

]
− 1

m!

[∑1
j=0 jmρ j +

∑2
j=1(v j)mρv j

]
.

(15)

The error constants and order of OBSOH are shown in Table 1.

3.2. Zero-stability
The block method is said to be zero-stable if the roots Ru,

u = 1, 2, . . . , 6 of the first characteristic polynomial γ(R) satisfy
|Ru| ≤ 1, u = 1, . . . , 6 multiplicity not exceeding the order of the
differential equation. The first characteristic polynomial γ(R) =
0 of the derived method is calculated as

γ(R) = det(RB(1) − B(0)),

where B(1) is a 6 × 6 identity matrix and

B(0) =



0 0 1 0 0 1
4

0 0 1 0 0 2
3

0 0 1 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1



,

and γ(R) = Rw−e(R− 1)e, where e is the order of the differential
equation and w is the order of the matrices B(1) and B(0)
[18]. The OBSOH can be shown to be zero-stable since the
first characteristic polynomial γ(R) = R4(R − 1)2 satisfies
|Ru| ≤ 1, u = 1(1)6.

3.3. Consistency
The developed method is concluded to be consistent

since according to Lambert [18], the necessary and sufficient
condition for a numerical scheme to be consistent is for it to
have order of at least one (m ≥ 1). The derived method is of
at least order 4 since the least order of the block method is of
order 4.

3.4. Convergence
A numerical method converges if it is consistent and zero-

stable [18, 19]. This implies that OBSOH converges since the
method is of order m = 4 > 1 and it satisfies the conditions for
zero-stability.

4. Numerical results

The following problems are considered in order to exam-
ine the accuracy and computational efficiency of the new block
method (OBSOH). The Rate of Convergence (ROC) of the
scheme on problems 2 to 4 confirms that the order of the de-
rived scheme OBSOH is of order 4. The efficiency curves of
the schemes on problems 1 and 6 are shown in Figures 1 and 2,
respectively. All computations were done using MATHEMAT-
ICA 13.0.

The notations used in representing the existing methods and
the derived method in the result Tables are:
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Table 1. Order and error constants of OBSOH.
S/N Scheme Order(m) Error Constant (Cm+2)
1 µn+ 1

4
4 − 41

5898240
2 µn+ 2

3
4 − 1

262440
3 µn+1 5 1

604800
4 µ′

n+ 1
4

4 − 229
4423680

5 µ′
n+ 2

3
4 1

14580

6 µ′n+1 4 − 1
17280

• EIAK = Error in Adeyefa and Kuboye [3].

• EIAD = Error in Adeyefa [11].

• EIAN = Error in Anake [12].

• EIOA = Error in Obarhua and Adegboro [13].

• EIBWO = Error in Bilesanya, Wusu and Olutimo [14].

• EIRKN = Well Known Runge-Kutta Nystrom Method
[14].

• EIK = Error in Kuboye [15].

• EIM = Error in Mohammed [16].

• EIMA = Error in Mohammed and Adeniyi [17].

• EIOBSOH = Error in One-step Block Scheme with Op-
timal Hybrid points.

where,
Error(i) = |y(i)

exact − y(i)
approx.|.

and

ROC = log2
(ME)2h

(ME)h ,

where (ME)2h is Max Error using 2h as step size, while (ME)h

is Max Error using h as step size.
The following problems are chosen for numerical computa-

tion to aid comparison with other existing methods in literature.

Problem 1 [3]

µ′′(t) = t(µ′)2, h = 0.003125;

µ(0) = 1, µ′(0) = 0.5,

with the exact solution

µ(t) = 1 +
1
2

In
[
2 + t
2 − t

]
.

Problem 2 [3]

µ′′(t) = µ′, h = 0.01;

µ(0) = 0, µ′(0) = −1,

Table 2. Comparison of errors for problem 1.
t EIK [15], k = 6 EIAN [12], k = 1 EIAK [3], k = 1 EIOBSOH, k = 1
0.1 9.577668E-10 4.98272E-11 6.743939E-12 6.66134E-16
0.2 2.368709E-09 4.10430E-10 5.572787E-11 2.22045E-16
0.3 3.732243E-09 1.42858E-09 1.965739E-10 6.66134E-16
0.4 5.475119E-09 3.52426E-09 4.947556E-10 1.77636E-15
0.5 1.142189E-08 7.24353E-09 1.043623E-09 2.22045E-15
0.6 4.567944E-08 1.33355E-08 1.982763E-09 3.55271E-15
0.7 2.055838E-06 2,28728E-08 3.527785E-09 6.21725E-15
0.8 4.248299E-06 3.74470E-08 6.020838E-09 6.66134E-15
0.9 6.660458E-06 5.95037E-08 1.001993E-08 7.10543E-15
1.0 9.445166E-06 9.29404E-08 1.646376E-08 4.66294E-15

Table 3. Comparison of log of maximum errors and number of iterations for
problem 1.

N Max Error (OBSOH) log (Max Error) N Max Error(EIAN [12]) log(Max Error)
160 2.22933E-13 -29.1319 160 6.2983E-12 -25.7907
320 4.66294E-15 -32.9991 320 4.03455E-13 -28.5387
640 2.53131E-14 -31.3075 640 5.9952E-14 -30.4452

Table 4. Comparison of errors for problem 2.
t EIM [16], k = 5 EIMA [17], k = 5 EIK [15], k = 6 EIAK [3], k = 1 EIOBSOH, k = 1
0.1 2.19800E-06 2.00400E-07 2.508826E-13 2.095826E-10 3.10862E-15
0.2 6.07040E-06 5.38600E-07 6.493175E-11 2.092718E-09 1.39888E-14
0.3 1.00510E-05 8.84000E-07 1.683146E-09 7.842546E-09 3.24185E-14
0.4 1.40253E-05 1.22970E-06 1.700635E-08 2.009500E-08 6.12843E-14
0.5 1.79934E-05 1.57520E-06 1.025454E-07 4.199771E-08 1.01918E-13
0.6 2.16162E-05 1.92040E-06 2.558711E-06 7.728842E-08 1.56541E-13
0.7 2.79930E-05 2.50600E-06 5.273300E-06 1.303844E-07 2.28706E-13
0.8 3.45610E-05 3.10600E-06 8.275935E-06 2.064839E-07 3.19744E-13
0.9 4.11140E-05 3.70500E-06 1.161667E-05 3.116817E-07 4.33875E-13
1.0 4.76560E-05 4.30400E-06 1.542187E-05 4.531001E-07 5.75096E-13

whose exact solution is

µ(t) = 1 − et.

Problem 3 [3]
The Vanderpol’s oscillator problem is also considered. It is
given as

µ′′(t) = 2 cos(t) − cos3 t − µ′ − µ − µ′(µ)2, h = 0.1;

µ(0) = 0, µ′(0) = 1,

with the theoretical solution

µ(t) = sin(t).

Problem 4 [14]

µ′′(t) = µ(t) + t − 1, t ∈ [0, 1] ;
4
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Figure 1. Efficiency curves for problem 1.

Table 5. Comparison of errors for roblem 3.
t EIAK [3], k = 1, m = 6 EIAD [11], k = 1, m = 5 EIOBSOH, k = 1, m = 4
0.1 3.307291E-10 4.16719627E-13 1.77330E-13
0.2 2.315513E-09 3.54860749E-12 2.84067E-12
0.3 6.161694E-09 9.04722120E-12 1.41904E-11
0.4 1.192381E-08 1.650241042E-11 3.81999E-11
0.5 1.934444E-08 2.544360932E-11 7.82125E-11
0.6 2.775449E-08 3.535590072E-11 1.36439E-10
0.7 3.608020E-08 4.570838971E-11 2.13886E-10
0.8 4.297844E-08 5.598981142E-11 3.10406E-10
0.9 4.708092E-08 6.574464284E-11 4.24862E-10
1.0 4.728457E-08 7.460291389E-11 5.55398E-10

Table 6. Comparison of errors for problem 4.

t EIRKN [14] EIBWO [14] EIOBSOH
0.1 2.973739 E-10 2.591705E-12 3.55271E-15
0.2 7.050944E-10 5.964562E-12 1.22125E-14
0.3 1.217025E-09 9.366508E-12 2.59792E-14
0.4 1.829043E-09 1.286815E-11 4.32987E-14
0.5 2.538910E-09 1.649259E-11 6.55032E-14
0.6 3.346159E-09 2.029099E-11 9.19265E-14
0.7 4.252021E-09 2.428346E-11 1.22236E-13
0.8 5.259365E-09 2.852540E-11 1.56430E-13
0.9 6.372666E-09 3.304634E-11 1.94844E-13
1.0 7.597991E-09 3.792694E-11 2.37643E-13

µ(0) = 2, µ′(0) = −2, h = 0.01.

Exact solution is

µ(t) = 1 − t + e−t.

Note that the simulation annealing scheme of Bilesanmi et
al. [14], an existing method for comparison in problems 4 and
5, is just an algorithm and not a block method that involves
steps so the step k does not apply in this scheme.

Problem 5 [14]

µ′′(t) = (1 + t2)µ(t),

µ(0) = 1, µ′(0) = 0, h = 0.01,

Table 7. Comparison of errors for problem 5.

t EIRKN [14] EIBWO [14] EIOBSOH
0.2 1.266432E-07 1.76241E-08 1.69642E-13
0.4 2.923595E-07 3.804534E-08 7.52509E-13
0.6 5.418410E-07 6.027792E-08 1.95022E-12
0.8 9.469284E-07 8.585760E-08 4.19753E-12
1.0 1.627915E-06 1.171072E-07 8.36908E-12

Table 8. Comparison of errors for problem 6.
t EIAN [12], k=1 EIOA [13], k=3 EIOBSOH, k=1
0.1 0.10E-09 2.00E-10 1.85296E-13
0.2 0.20E-09 3.15E-10 3.35731E-13
0.3 0.28E-09 2.74E-10 4.54636E-13
0.4 0.34E-09 5.44E-10 5.48339E-13
0.5 0.39E-09 7.53E-10 6.19726E-13
0.6 0.43E-09 2.76E-10 6.72684E-13
0.7 0.45E-09 1.18E-10 7.09821E-13
0.8 0.40E-09 1.76E-10 7.34135E-13

Table 9. Comparison of log of maximum errors and number of iterations for
problem 6.

N Max Error (OBSOH) log(Max Error) N Max Error(EIAN [12]) log(Max Error)
10 7.68698E-11 -23.2889 10 2.08868E-08 -17.6841
20 7.51066E-13 -27.9173 20 1.0018E-09 -20.7215
40 3.41394E-14 -31.0083 40 5.3168E-11 -23.6576
80 4.65430E-15 -33.0010 80 3.16314E-12 -26.4795

with the exact solution

µ(t) = e
[

t2
2

]
.

Problem 6 [13]

µ′′(t) = −1001µ′ − 1000µ, h = 0.05;

µ(0) = 1, µ′(0) = −1.

Exact solution is
µ(t) = e−t.

Problem 7 [13]
A practical problem on resonance vibration of a machine was
modeled as:

2000µ′′ + 2 × 105µ = 2000 sin(10t), h = 0.01;

µ(0) = 0, µ′(0) = 0.1.

Exact solution is

µ(t) =
1
10

cos(10t) +
1

200
sin(10t) −

t
20

cos(10t).

Problem 8 [3]
We considered the following system of second-order equations:

µ′′1 = −4t2µ1−
2µ2√
µ2

1 + µ
2
2

, µ1

(√
π

2

)
= 0, µ′1

(√
π

2

)
= −2

√
π

2

5
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Figure 2. Efficiency curves for problem 6.

Table 10. Comparison of errors for problem 7.
t EIOA [13], k = 3 EIOBSOH, k = 1
0.01 3.849660E-10 3.24740E-15
0.02 8.702471E-10 5.66951E-12
0.03 2.929087E-09 1.67078E-11
0.04 4.479915E-09 3.27208E-11
0.05 4.075598E-09 5.32108E-11
0.06 7.575420E-09 7.75898E-11
0.07 1.060883E-09 1.05189E-10
0.08 1.747335E-09 1.35271E-10
0.09 1.836375E-09 1.67042E-10
0.10 2.762184E-08 1.99664E-10

Table 11. Result generated when the new scheme was applied to problem 8 for
µ1.

t Exact solution µ1 Numerical solution µ1 EIOBSOH
1.253314 =

√
π
2 0 0 0

1.263314 −0.025163626354015697 −0.025163626354020932 5.23540E-15
1.273314 −0.05051106208227043 −0.05051106208298397 7.135403E-13
1.283314 −0.07602542099130294 −0.07602542100266559 1.13626E-11
1.293314 −0.10168905502407596 −0.10168905510863648 8.45605E-11
1.303314 −0.1274835519786236 −0.12748355238290313 4.04279E-10
1.313314 −0.15338973447367182 −0.15338973592854993 1.45488E-09
1.323314 −0.17938766022292565 −0.17938766452226018 4.29933E-09
1.333314 −0.20545662367994122 −0.20545662367994122 1.09947E-08

µ′′2 = −4t2µ2 −
2µ1√
µ2

1 + µ
2
2

, µ2

(√
π

2

)
= 1, µ′2

(√
π

2

)
= 0,

h = 0.01,
π

2
≤ t ≤ 1.4.

Exact solution is

µ1(t) = cos(t2), µ2(t) = sin(t2).

5. Discussion of results

In Table 2, the errors from EIK, EIAN and EIAK are com-
pared to that of EIOBSOH and the new method proved superior
in solving Problem 1. Table 3 shows the comparison of the Log
of Max error and the number of iterations from EIOBSOH and
EIAN and the results were used to plot the efficiency curves of

Table 12. Result generated when the new scheme was applied to problem 8 for
µ2.

t Exact solution µ2 Numerical solution µ2 EIOBSOH
1.253314 =

√
π
2 1 1 0

1.263314 0.9996833458194228 0.9996850201319464 1.67431E-06
1.273314 0.9987235015795518 0.9987369201519218 1.34186E-05
1.283314 0.9971058797154368 0.9971512425384893 4.53628E-05
1.293314 0.9948162323204776 0.9949239221444588 1.07690E-04
1.303314 0.9918406847749862 0.9920513048128204 2.10620E-04
1.313314 0.9881657701813479 0.9885301658317266 3.64396E-04
1.323314 0.983778464574085 0.9843577282034791 5.79264E-04
1.333314 0.9786662228696967 0.9795316807052991 8.65458E-04

Table 13. Rate of convergence of the scheme on some problems.
h Max Error (h) Max Error (2h) ROC

Problem 2 0.01 5.75096 × 10−13 9.00613 × 10−12 3.9691
0.02 9.00613 × 10−12 1.40129 × 10−10 3.9597

Problem 3 0.025 2.35367 × 10−12 3.672 × 10−11 3.9636
0.05 3.672 × 10−11 5.55398 × 10−10 3.9189
0.1 5.55398 × 10−10 7.7488 × 10−09 3.8024

Problem 4 0.005 1.2601 × 10−14 2.37643 × 10−13 4.2372
0.01 2.37643 × 10−13 3.66146 × 10−12 3.9456
0.02 3.66146 × 10−12 5.73256 × 10−11 3.9687

both schemes as shown in Figure 1. In Tables 4 and 5, the er-
rors from different numerical schemes were compared to that
of EIOBSOH after solving problems 2 and 3, respectively. In
Table 5, the results from EIAD is almost as good as that of
EIOBSOH because the method is a one-step method of order
5 with three hybrid points while the derived method is a one-
step scheme with two hybrid points. Also in Tables 6 - 8, OB-
SOH had better accuracy when compared to the other existing
schemes that solved same set of Initial Value Problems. Results
from Table 9, where the Log of Max error and the number of
iterations from EIAN and EIOBSOH for problem 6 were com-
pared, are used to plot the efficiency curves of both schemes
as displayed in Figure 2. The efficiency curves displayed in
Figures 1 and 2 show that OBSOH is efficient in the numer-
ical solution of second-order IVPs. In Table 10, OBSOH is
seen to produce smaller error when compared with EIOA. Ta-
bles 11 and 12 show that the new method can integrate systems
of second-order IVPs directly. The rate of convergence Table
shown in Table 13 confirms that the order of OBSOH is of or-
der 4. Thus, all the Tables show that OBSOH can effectively
and efficiently Integrate the linear and nonlinear second-order
IVPs (1) directly.

6. Conclusion

A new optimized one-step block hybrid scheme for solving
linear and non-linear second-order initial value problems of or-
dinary differential equations is developed and applied directly
without reducing to system of first-order ODEs. The two hy-
brid points v1 and v2 in the derived scheme were introduced in
such a way that the points lie in the interval 0 < v1 < v2 < 1.
The approximate values of the hybrid points were obtained by
optimizing the local truncation error of the derived scheme and
its derivatives. The efficiency of the new scheme (OBSOH) is
shown in Tables 2 - 12 as its being compared with some existing
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methods. The analysis of the method were shown to be consis-
tent, zero-stable and convergent. OBSOH has proven effective
in the direct integration of second-order initial value problems
of ordinary differential equations.
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