
J. Nig. Soc. Phys. Sci. 6 (2024) 1911

Journal of the
Nigerian Society

of Physical
Sciences

Regularization effects in deep learning architecture

Muhammad Dahiru Limana,∗, Salamatu Osanga Ibrahima, Esther Samuel Alub, Sa’adu Zakariyaa

aDepartment of Computer Science, Federal University of Lafia, Nasarawa, Nigeria
bDepartment of Computer Science, Nasarawa State University Keffi, Nasarawa, Nigeria

Abstract

This research examines the impact of three widely utilized regularization approaches – data augmentation, weight decay, and dropout –on miti-
gating overfitting, as well as various amalgamations of these methods. Employing a Convolutional Neural Network (CNN), the study assesses the
performance of these strategies using two distinct datasets: a flower dataset and the CIFAR-10 dataset. The findings reveal that dropout outper-
forms weight decay and augmentation on both datasets. Additionally, a hybrid of dropout and augmentation surpasses other method combinations
in effectiveness. Significantly, integrating weight decay with dropout and augmentation yields the best performance among all tested method
blends. Analyses were conducted in relation to dataset size and convergence time (measured in epochs). Dropout consistently showed superior
performance across all dataset sizes, while the combination of dropout and augmentation was the most effective across all sizes, and the triad of
weight decay, dropout, and augmentation excelled over other combinations. The epoch-based analysis indicated that the effectiveness of certain
techniques scaled with dataset size, with varying results.

DOI:10.46481/jnsps.2024.1911

Keywords: Deep Learning, Regularization, Overfitting, Weight Decay, Augmentation

Article History :
Received: 19 November 2023
Received in revised form: 25 January 2024
Accepted for publication: 20 February 2024
Published: 11 March 2024

© 2024 The Author(s). Published by the Nigerian Society of Physical Sciences under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this

work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Communicated by: O. Akande

1. Introduction

Various deep-learning architectures have been utilized to
build models for different problem domains. These architec-
tures encompass several techniques. Deep belief networks [1],
CNNs [2], and Recurrent Neural Networks (RNNs) [3, 4]. Ac-
cording to Moradi et al. [5], these models can learn complex
representations for a wide range of tasks.

In the present study, we focused on the use of CNN architec-
ture. The CNN architecture consists of a convolutional layer for
feature extraction and learning filters, pooling layers for down-
sampling, and a fully connected layer for classification. Nielsen

∗Corresponding Author Tel.: +234-803-899-2197;
Email address: mlimand76@gmail.com (Muhammad Dahiru Liman)

[6] states that the key principles underlying the design of CNNs
are local receptive field, weight sharing, and pooling. Model
learning requires sufficient data for the model to learn. The ex-
tent to which the model learns effectively is heavily influenced
by the volume of datasets used [7]. Insufficient data can lead to
overfitting.

In this study, we employed two datasets (CIFAR10 and
Flower) of varying sizes to investigate the performance of these
techniques. By utilizing these two datasets, we aim to assess the
transferability and generalization capabilities of the techniques
across datasets of different sizes. An ideal model should be able
to generalize well to previously unseen data. Nielsen [6] ex-
plains that overfitting commonly occurs when the training data
is insufficient. Even with a substantial amount of training data,

1

https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0


Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 2

deep models are still prone to overfitting, as noted in [8].
Overfitting poses a significant challenge for model devel-

opers as they strive to create models that can be generalized.
One approach to preventing overfitting is regularization, as dis-
cussed in Moradi et al. [5] and Nielsen [6]. Various regular-
ization techniques have been developed over time, including
Dropout [9], adversarial training [10], early stopping [11, 12],
ensemble methods [13], noise injection [4], batch normaliza-
tion [14], data augmentation (transformed data) [15], L1 [16],
and Weight Decay [17], among others.

Weight decay (L2) is a technique that encourages a network
to favor small weights, and it only allows larger weights if they
significantly improve the initial loss function [6]. The core idea
behind dropout is to introduce independence among the neurons
or nodes within a neural network. During training, each node
has a probability, denoted as p, of being deactivated (turned
off), whereas there is a complementary probability of 1-p that
remains active. This selective deactivation helps prevent co-
adaptation between neurons [9]. The ability of a model to gen-
eralize effectively is typically associated with an ample amount
of training data.

Nevertheless, collecting a sufficient quantity of data often
proves to be a challenging, time-consuming, and costly en-
deavor, as mentioned in Nielsen [6]. One straightforward ap-
proach to address the issue of limited data is to incorporate
transformed data into the existing dataset. Transformed data
can be generated by applying various transformations such as
affinity, rotation, translation, and cropping to the available data.

The availability of these regularization methods is advan-
tageous for programmers. However, the abundance of options
can make it challenging for developers to determine which tech-
nique to employ, as pointed out in Moradi et al. [5]. Hence,
this study aims to investigate the effects of data augmenta-
tion, weight decay, and dropout of three popular regularization
strategies [6]. We also explore different combinations of these
three methods. By examining and comparing the impacts of
these strategies, developers can make more informed decisions
regarding their utilization, based on the model’s architecture
and dataset size.

2. Related Work

2.1. Analysis of related work
Overfitting has emerged as a significant concern, and nu-

merous methods have been developed to address this problem.
However, developers seeking to address overfitting face the
challenge of determining the most effective technique or a com-
bination of techniques for their specific dataset size. With the
increasing number of available techniques, it has become cru-
cial for developers to compare and evaluate different options.
The following are several comparisons conducted.

In their analysis using the MNIST dataset, Srivastava et
al. [18] introduced a new technique, called dropout. This
technique was compared with several traditional regularization
strategies including KL-sparsity, max-norm, L1, and L2. Their
comparison involved evaluating the performance of the tech-
niques mentioned and other pairings, as presented in Table 1.

They concluded that max-norm combined with dropout yielded
the best results with the lowest classification error. However, it
would have been beneficial if they had also included the results
of dropout alone in their comparison, similar to how they in-
cluded Max-norm and L2. This provides insights into whether
dropout outperforms other techniques. Unfortunately, the ta-
ble presenting their comparison does not display the results of
dropout alone, even though it was intended to be compared with
other methods.

Peng et al. [19] conducted a comparison of four regular-
ization methods based on embeddings using neural networks.
These methods encompassed dropout, re-embedding, penaliz-
ing the l2- norm of embeddings, and penalizing the l2- norm
of the weights. Their findings revealed that, except for the
re-embedding of words, all regularization strategies employed
helped mitigate overfitting. The effectiveness of these regular-
ization techniques was found to be influenced by the dataset
size. Dropout performed well, l2-norm improved the train-
ing performance (better training accuracy), and re- embedding
added nothing to the performance. The combination of the l2-
norm with dropout produced the best result. This paper presents
the importance of the size of the dataset, as the performance of
regularization models depends on the size of the dataset. Two
datasets were used; experiments I and II used 7000, and 150000
data respectively.

Moradi et al. [5] compared the performance of the follow-
ing regularization techniques Data Augmentation, Adversarial
training, Label smoothing, Weight Decay, Batch Normaliza-
tion, Dropout, Fractional pooling, noisy inputs, noisy weights,
Ensemble, and dropoutconnect using CIFAR-10 dataset. The
results show that adding noise to the input and weight did not
improve the performance, whereas the rest of the techniques
improved the performance. The results showed that weight
decay and augmentation were acceptable for use. However,
for dropout, it is advised to ensure sufficient computational re-
sources. In such cases, either batch normalization or an en-
semble can be utilized. In their experiment, batch normaliza-
tion exhibited a slower convergence rate, whereas the ensemble
technique achieved the highest accuracy. The problem here is
the use of a single dataset to determine the effectiveness of the
techniques.

Raouhi et al. [20] conducted a comparison of several regu-
larization techniques, namely Lasso, ridge, and ElasticNet, us-
ing weather and climate data. The evaluation of these tech-
niques was based on metrics such as R2 and Mean Squared
Error. The authors of this study have made several observations
and conclusions. They found that ridge regularization strikes a
balance between handling collinearity among independent vari-
ables while maintaining model simplicity. On the other hand,
they noted that lasso regularization encounters difficulties when
dealing with correlated variables. In such cases, the lasso tends
to set some variables to zero while retaining only one variable,
which leads to a loss of information and can negatively impact
the accuracy of the model.

Swastika et al. [21] applied some regularization techniques
to some deep-learning models for the detection of Malaria.
The dataset used was a malaria dataset with 27588 images.

2



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 3

Table 1. Comparison of different regularization methods on MNIST [18]

Method Text Classification
L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout +Max-norm 1.05

The regularization techniques used were L2 regularization,
dropout, and data augmentation. These techniques were ap-
plied to the following Convolutional Neural Network Architec-
tures BaselineNet-1, MicroVGGNet, ResNet-50, and Rajara-
man. The results showed that regularizations increased the ac-
curacy, specificity, and sensitivity of the models.

Kamalov and Leung [22] investigated the impacts of reg-
ularization on the performance of the neural network using an
imbalanced dataset from Reuters. Three regularization tech-
niques are used: Dropout, L1, and L2. Numerical experiments
showed that L1 regularization can tackle overfitting in Neural
Networks for imbalanced datasets.

Marin et al. [23] conducted an empirical study to evalu-
ate the impact of optimizations and various regularization tech-
niques using three convolutional neural network architectures.
The CIFAR-10 and Fashion-MNIST datasets were used for the
evaluation. Researchers have focused on two commonly con-
sidered metrics to assess the efficiency of the algorithms: gen-
eralization, which measures the model’s performance on unseen
data, and speed of convergence, which evaluates the time taken
for the algorithm to converge or reach the optimal value. Based
on their evaluation, Marin et al. [23] concluded that classical
Nesterov, adaptive, Adam, and AdaMax optimizers yielded the
highest accuracy. Most of the optimizers achieved zero loss and
100% accuracy within approximately 350 epochs. However,
the researchers did not provide a table comparing the perfor-
mances of the different regularization techniques.

We found one limitation in Moradi et al. [5], Srivastava et
al. [18], Kamalov and Leung [20], Marin et al. [21], Zeiler and
Fergus [22] and Bishop [23] based on the analyses mentioned
above. The use of a single dataset and two datasets of equal
sizes to compare and draw conclusions regarding the efficacy
of regularization algorithms has been noted as a drawback.

3. Materials and method

3.1. Materials

To address the limitation, we have chosen two datasets to
work with. The Flower dataset and the CIFAR10 dataset. The
reason for this is to know whether the results can be general-
ized. There is a need to know if there is consistency in the
performance of the models on both datasets.

The CIFAR-10 dataset has a total of 60000 images of
32x32x3 dimensions. It has 10 classes, each consisting of 6000
images. The dataset is divided into 50000, and 10000 for train-
ing and testing respectively. 20% of the training set is used as

a validation set. Airplanes, Automobiles, trucks, ships, birds,
cats, Deer, dogs, Horses, and frogs are made up of the CIFAR-
10 classes.

The flower dataset has a total of 3640 images with 5 classes
and the same dimension as CIFAR-10. The dataset was di-
vided in the same ratio as CIFAR-10, with 3100 for training
and 540 for testing. The validation set is derived from the train-
ing set, using 20% of the training data. The flower dataset in-
cludes classes such as Tulips, Sunflowers, Roses, Dandelion,
and Daisy, with each class having 793, 693, 635, 892, and 627
photos, respectively, according to the provided statistics.

Although the original Kaggle flower data consists of 3,670
images, we used 3,640 images to accommodate a batch size of
20. The Summary of the two datasets is shown in Table 2.

Other Materials include PC, and Google Colab for experi-
ments.

3.2. Method

3.2.1. Design of model architecture
The CNN model consists of three convolutional, and fully

connected layers each with a dropout. Each convolutional layer
is followed by an activation function called ReLU and a max-
pooling layer for downsampling. Similarly, ReLU follows each
linear layer with a dropout. The final linear layer uses the Soft-
Max function for classification.

The purpose of the three convolutional layers is to extract
features. The first layer is expected to detect simple features
like lines and blobs. The intermediate layers in the second
layer are anticipated to recognize more complex patterns such
as Stripes, circles, honeycombs, and faces. According to Zeiler
and Fergus [24], the third and final layer is responsible for iden-
tifying critical features for classification, including animal faces
like Trucks, cats, birds, airplanes, ships, deer, dogs, frogs, and
horses, as well as flowers like Roses, Sunflowers, Tulips, Dan-
delion, and Daises.

The ReLU activation function is used to introduce non-
linearities in the model. It has a lower bound of zero and no
upper bound. As stated by Goodfellow et al. [25], ReLU does
not saturate.

The architectural structure of the CNN model is presented
in Figure 1.

3.3. Performance Evaluation Metrics

In this research, the metric used to evaluate the model’s
performance is accuracy. Accuracy represents the proportion

3



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 4

Table 2. Summary of the two datasets.
Datase t Number of classes Training size Validation size Test size Total size
CIFA R10 10 40000 10000 10000 60000
Flower 5 2480 620 540 364 0

Figure 1. CNN Model Architecture.

of correct predictions made by the model compared to the to-
tal number of predictions. It quantifies the number of accurate
classifications.

Accuracy =
Number of correct predictions

All observations
(1)

3.4. Research questions

To address the identified limitation, three research questions
were proposed.

1. RQ0: How does Augmentation, Weight decay, and
Dropout perform on Flower and CIFAR10 datasets?

2. RQ1: How does the pairing of the techniques (Augmen-
tation + Weight Decay, Augmentation + Dropout, and
Weight Decay + Dropout) perform on Flower and CI-
FAR10 datasets?

3. RQ2: How does the combinations of Weight Decay,
Augmentation, and Dropout perform on Flower and CI-
FAR10 datasets?

To investigate the potential benefits or drawbacks, we con-
ducted experiments by combining two and three strategies, in-
spired by the studies conducted by Srivastava et al. [19] and
Peng et al. [20]. The aim was to determine if these combina-
tions would yield greater benefits compared to using a single
strategy or if they would introduce potential issues, such as un-
derfitting.

3.5. Implementation

To practically implement the CNN model, we utilized the
PyTorch framework.

1. In this work, we addressed the constraint by loading our
data into the dataset using two datasets. The CIFAR10
dataset and the flower dataset were utilized. We obtained
the CIFAR10 dataset from Torchvision, and to import the
data, we applied PyTorch’s transform function for data
normalization and conversion to PyTorch tensors. This
normalization process, using a mean and standard devia-
tion of 0.5 for each of the three RGB channels, helps the
model train more efficiently. We created a trainset and
a test set from the CIFAR10 dataset and then generated
three loaders for training, validation, and test sets using
these sets. Similarly, for the flower dataset obtained from
Kaggle, we followed the same steps as CIFAR10 to cre-
ate a train loader, validation loader, and test loader.

2. To ensure the accuracy of the data, we performed data
visualization. You can find visual representations of a
training batch from each dataset in Figure 2 and 3.

3. The PyTorch framework is utilized to construct the model
using the nn.Module class. The CNN model consists of
three convolutional layers and three linear layers. The in-
put image has dimensions of 32x32x3. The image tensor
for the first convolutional layer is 32x32x3. The second
convolutional layer has an image tensor of 16x16x16,
while the third convolutional layer has an image tensor of
8x8x32. After the convolutional layers, the image is flat-
tened and passed to the first fully connected layer, which
contains 64x4x4=1024 nodes. The second hidden layer,
known as layer 2, is fully connected and has 512 nodes.
The final fully connected layer, layer 3, has 256 nodes
and utilizes the Softmax algorithm for classifying either
10 or 5 classes. The output of the pooling or convolu-

4



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 5

Figure 2. Batch of training data from CIFAR10.

Figure 3. A batch of training data from flower.

Figure 4. The test result of our Baseline Model.

Figure 5. Result of Weight Decay + Dropout + Augmentation.

tional filter operation is determined using the following
formula:

Wout =
(Win − F + 2P)

S
+ 1 (2)

Where F is for the Kernal size of the filter, P is for
padding, S is for stride, Win for input width, and Woutfor
output size.
The model performance is evaluated using a loss function
and an optimization process. The aim is to find the best
bias and weight that will minimize the loss/cost function
[6]. The learning algorithm used is the Stochastic Gradi-
ent Descent while the loss function used is Negative Log
Likelihood (NLLL). This loss function was considered

because it is used to solve classification problems [26].
Here is the formula for the softmax activation function:

pk =
efk∑
j efj (3)

Where f stands for class. Equation (4) is the NLLL:

Li = −log(pyi) (4)

Where pyi is the output of softmax, in this case pk. Li is
the loss function. The output of the model (pk) and the
loss (Li) are used during backpropagation.

4. SGD is used in this work. For every iteration a random
sample of mini-batch is chosen and the average is taken to

5



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 6

get the cost function [6]. Gradient descent is not efficient
and is slower compared to SGD [27]. The road to minima
is noisier for SGD compared to gradient descent.

5. The model is trained using training data and evaluated us-
ing validation data. The training is done for 100 epochs.

6. To improve the performance of the model, Bayesian op-
timization (BO) was used. BO was used to search for
the best hyperparameters. The Adaptive Experimentation
(AX) platform was used because it does hyperparameter
search using BO for CNN [28], and also automates the
process of choosing hyperparameters in a large space.
BO is an approach that uses Bayes Theorem in search
for the minimum/maximum of an objective function. It
utilizes an acquisition function and a surrogate model to
guide the search process [29]. The acquisition function
focuses the search on areas where there is a potential for
better performance than the current best, while the sur-
rogate model predicts the objective function. Bayesian
optimization is chosen in this work because the AX plat-
form used provides it. BO accelerates the search process
and enables reaching the global minimum with fewer iter-
ations compared to other methods. In the context of deep
learning architecture, where parameter search is costly
and noisy, random search or grid search methods are in-
adequate. In the AX platform, Bayesian optimization is
initially performed using the Sobol method for the first
five trials and then switches to Gaussian Process-based
Bayesian Optimization (GPEI) for the remaining trials.
The learning rate, weight decay, and momentum are fine
tune using the AX platform. The learning rate and weight
decay are varied within the range of 1e-6 - 0.4. The mo-
mentum is explored within the range of 0.0 - 1.0. Dropout
values range from 0.1 - 1.0. For augmentation, random
rotation, and random horizontal flip techniques are em-
ployed. The images are randomly rotated horizontally
with a default probability of 0.5. Additionally, specific
numbers like 5, 10, 15, 20, 25, 30, 35, and 45 are sought
during the process.

7. In this stage, we employ a test loop to assess the perfor-
mance of our model using the test data. Before executing
the test, we switch the model to the evaluate mode. Then,
we proceed to evaluate the accuracy of our model.

8. We visualize the predictions made by the model for better
understanding. Figure 4 and 5 presents the model’s pre-
dictions for a test sample, comparing the baseline model
with the model incorporating augmentation, weight de-
cay, and dropout. In Figure 4, any errors made by the
Baseline Model are highlighted in red.

4. Results and discussion

Our experimental findings are shown in Table 3 and 4. To
know the best techniques on a given data we need to compare
their performances. To get the best performance in a model,
we fine-tune the model using the AX platform which results in

Figure 6. CIFAR10 Baseline model.

Figure 7. Flower Baseline model.

different hyper parameters. The three research questions will
be addressed using the tables.

Table 3 presents the results of the Baseline model, which
does not incorporate any regularization techniques. The test
accuracy for this model is 73%, while the training accuracy is
100%. These values indicate that the model is overfitting to
the training data. Figure 6 and 7 illustrates the training and
validation loss of the baseline model for both datasets.

The discrepancy between the training loss and the validation
loss depicted in Figure 6 and 7 clearly indicates the presence
of overfitting in the model. Our goal is to achieve a scenario
where the validation loss decreases in line with the training loss,
indicating a better generalization of the model to unseen data.

RQ0: Augmentation vs Weight Decay vs Dropout

Table 3 illustrates that Dropout achieves superior perfor-
mance on the CIFAR10 dataset compared to Weight Decay and
Augmentation. It achieves a test accuracy of 78%, while Aug-
mentation and Weight Decay attain test accuracies of 75% each.
Similarly, Table 4 demonstrates that Dropout outperforms the
other two methods, achieving a test accuracy of 70%, while

6



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 7

Table 3. CIFAR10 Result.
Hyperparameters Accuracy

(%)
Techniques Learning

rate
Momentum Epoch P Augmentation L2 Train Test

Baseline 0.0059 0.1925 100 0.0000 100 73
Dropout 0.0039 0.2862 100 0.5 0.0000 93 78
Weight Decay 0.0020 0.9000 100 0.0001 100 75
Augmentation 0.0083 0.0000 100 5 0.0000 99 75
Dropout +Weight Decay 0.0055 0.3342 100 0.3 0.0047 89 77
Dropout + Augmentation 0.0039 0.3659 100 0.4 5 0.0000 88 80
Weight Decay + Augmentation 0.0044 0.1719 100 10 0.0002 96 75
Dropout +Weight Decay + Augmentation 0.0027 0.5731 100 0.3 5 6.68e- 06 93 80

Table 4. Results of flower.
Hyperparameters Accuracy

(%)
Techniques Learning

rate
Momentum Epoch p Augmentation L2 Train Test

Baseline 0.0024 0.7911 100 0 100 63
Dropout 0.0086 0.3503 100 0.6 0 82 70
Weight Decay 0.0060 0.9000 100 0.0001 100 66
Augmentation 0.0017 0.8470 100 30 0 77 69
Dropout +Weight Decay 0.0023 0.8177 100 0.2 3.1e- 05 97 66
Dropout + Augmentation 0.0067 0.8252 100 0.4 5 0 97 72
Weight Decay + Augmentation 0.0052 0.7104 100 25 2.3e- 05 87 68
Dropout +Weight Decay + Augmentation 0.0159 0.4353 100 0.4 10 1.5e- 06 90 73

Figure 8. CIFAR10 with Dropout.

Augmentation and Weight Decay achieve test accuracy rates of
69% and 66% respectively. These findings highlight the superi-
ority of Dropout over Augmentation and Weight Decay in both
small and large datasets. Furthermore, in the Flower dataset,
augmentation proves to be more accurate than weight decay,
while both methods exhibit equal accuracy in the CIFAR10
dataset. The performance of our model with Dropout in both
dataset is shown in figure 8 and 9.

Figure 9. Flower with Dropout.

RQ1: Augmentation + Weight Decay vs Augmentation +
Dropout vs Weight Decay + Dropout

In this analysis, we explore the impact of the mentioned
combinations on the two datasets. We found that Augmentation
+ Dropout performs well on both datasets. On the CIFAR10
dataset, it achieves a test accuracy of 80%, surpassing the test
accuracies of Weight Decay + Dropout (77%) and Augmenta-
tion + Weight Decay (75%). Similarly, on the flower dataset,

7



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 8

Figure 10. Dropout + Augmentation with CIFAR10.

Figure 11. Dropout + Augmentation with Flower.

Augmentation + Dropout achieves a test accuracy of 72%, out-
performing the test accuracies of Weight Decay + Dropout
(66%) and Augmentation +Weight Decay (68%). The training
and validation loss of Augmentation +Dropout on both datasets
is depicted in Figure 10 and 11.

RQ2: Augmentation + Weight Decay + Dropout

Lastly, we analyze the combined effect of the three strate-
gies on both datasets and compare their effectiveness to other
techniques. The three combinations we tested on the two
datasets yielded the best results, although in some cases they
performed similarly to Augmentation + Dropout. This indi-
cates that incorporating Weight Decay did not improve the out-
come as expected. Its results from Table 3 were identical to
Augmentation + Dropout, while Table 4 showed slightly bet-
ter results, with only a 1% improvement over Augmentation +
Dropout. Figure 12 and 13 presents the performance of Weight
Decay, Dropout and Augmentation in both dataset.

Figure 12. Dropout +Weight Decay + Augmentation with CIFAR10.

Figure 13. Dropout +Weight Decay + Augmentation with Flower.

4.1. Analysis

To gain a deeper understanding of the behavior of each strat-
egy, we performed two types of analysis on all the strategies us-
ing the CIFAR10 dataset. We evaluated each method based on
the number of epochs, following the approach used in a study
by Moradi et al. [5]. Additionally, similar to the method em-
ployed by peng et al. [20], we evaluated all the strategies con-
sidering the size of the datasets.

4.1.1. Analysis based on number of epochs
Table 5 and Figure 14 displays the obtained results. In this

analysis, we trained the model on the entire CIFAR10 training
dataset, which consists of 50,000 samples, using the hyperpa-
rameters specified in Table 4. In contrast, the results reported in
Table 3 were based on a setup with 10,000 test samples, 10,000
validation samples, and 40,000 training samples.

4.2. Analysis based on the size of the dataset

We investigate the relationship between dataset size and
various regularization methods. We specifically focused on the
CIFAR10 dataset due to its size. For each dataset size, we uti-
lized different hyperparameters, except for the largest size of

8



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 9

Table 5. Results of analysis based on number of epochs.
Test Accuracies at Different Epochs (%)

Techniques 10 20 30 40 50 60 70 80 90 100
Baseline 67 68 69 72 73 73 74 74 73 74
Dropout 54 67 72 74 76 77 78 78 79 79
Weight Decay 69 72 71 72 74 75 75 76 74 75
Augmentation 68 73 74 75 74 75 76 75 75 76
Weight Decay + Dropout 60 70 74 76 77 77 77 77 78 78
Augmentation + Dropout 58 70 74 76 78 79 79 79 80 80
Augmentation +Weight Decay 60 71 74 75 74 74 75 76 75 75
Augmentation +Weight Decay + Dropout 62 71 76 77 79 79 80 80 80 81

Table 6. Results of flower.
Technique Epoch 10000

Accuracy
(%)

20000
Accuracy
(%)

30000
Accuracy
(%)

40000
Accuracy
(%)

50000
Accuracy
(%)

Baseline 100 61 67 72 73 74
Dropout 100 69 74 76 78 79
Weight Decay 100 66 72 73 75 75
Augmentation 100 64 69 73 75 76
weight Decay + Dropout 100 63 73 75 77 78
Augmentation + Dropout 100 70 75 77 80 80
Augmentation +Weight Decay 100 65 70 73 75 75
Augmentation +Weight Decay + Dropout 100 70 75 78 80 81

Figure 14. Accuracy vs Number of Epochs on CIFAR10.

50,000, where we used 40,000 samples as there was no addi-
tional validation data available. We used the appropriate hyper-
parameters for each dataset size during training. Our findings
indicate that while the performance of certain approaches im-
proved as the dataset size increased, others reached a plateau
and did not show further improvement as shown in Table 6 and
Figure 15.

Summary of findings from analysis

Based on the information presented in Table 5, Weight De-
cay achieves quicker convergence compared to Augmentation
and Dropout for RQ0. On the other hand, Dropout takes longer

Figure 15. Accuracy vs size of the dataset on CIFAR10.

to converge because of the independence among neurons. For
RQ1, Augmentation + Dropout and Weight Decay + Dropout
converge at a slower rate compared to Augmentation +Weight
Decay. Among all the combinations, Augmentation + Weight
Decay + Dropout shows the slowest convergence rate for RQ2,
requiring 100 epochs to reach its highest accuracy. Gener-
ally, Weight Decay demonstrates faster convergence than other
methods, while Augmentation +Weight Decay + Dropout con-
verges more slowly.

As shown in Table 6, Dropout outperforms Weight Decay
and Augmentation in all sizes of the CIFAR10 dataset for RQ0,
as well as in both CIFAR10 and Flower datasets. In terms of
RQ1, Augmentation + Dropout outperforms Augmentation +

9



Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 10

Weight Decay and Weight Decay + Dropout in all sizes of the
CIFAR10 dataset studied, and it also performs better in the
Flower datasets. For RQ2, Augmentation + Weight Decay +
Dropout outperforms all other strategies across all dataset sizes,
including the CIFAR10 and Flower datasets. The combination
of Weight Decay + Augmentation + Dropout is generally the
most effective strategy, as indicated in Table 6. Additionally, it
was observed that techniques such as Weight Decay, Augmen-
tation + Dropout, and Augmentation + Weight Decay reach
a saturation point at dataset sizes of 40,000, while techniques
like Dropout, Augmentation, Weight Decay + Dropout, and
Augmentation +Weight Decay + Dropout continue to improve
steadily with more data.

5. Discussion

Comparing Dropout with Weight Decay and Augmentation,
Dropout proves to be the most effective method, although it
takes longer to converge. For the CIFAR10 dataset, the most
favorable values of p for Dropout were found to be 0.4 and 0.5,
while for the flower dataset, the value of p was determined to
be 0.6.

Weight Decay performs less effectively than Dropout and
Augmentation. However, it converges faster compared to the
other methods. At epoch 10, Weight Decay achieves the high-
est accuracy of 69% on the CIFAR10 dataset and remains su-
perior to Augmentation when the dataset size is smaller, such
as 10,000 or 20,000. The suitable values for weight decay were
found to be 0.0001, 0.0002, and 0.0003 in most of our studies.

Although Augmentation is less efficient than Dropout, it
converges more rapidly. From epoch 10 to 40, Augmentation
outperforms Dropout based on our analysis. Random rotation
of images by 5 and 10 degrees yields better results on CIFAR10,
while values of 25 and 30 produce positive results on the flower
dataset. It should be noted that the flower dataset, unlike the
CIFAR10 dataset, consists of images of varying sizes that were
resized to 32.

Dropout consistently proves to be superior to the combi-
nation of Weight Decay in all conducted trials, even though
Weight Decay converges faster than Dropout.

Among the combinations, Augmentation + Dropout has
demonstrated the highest effectiveness compared to Weight De-
cay +Dropout and Augmentation +Weight Decay. It ranks sec-
ond among the seven approaches, with Augmentation +Weight
Decay +Dropout being the most effective on both datasets. The
optimal Dropout values were found to be 0.3 and 0.4, while ran-
dom rotation values of 5, 10, and 15 produced positive results.
However, Weight Decay initially outperforms this combination
due to its early convergence, as Augmentation +Weight Decay
+ Dropout requires more time to converge.

Augmentation + Weight Decay is less effective than Aug-
mentation + Dropout since it combines weight decay with aug-
mentation. Applying Dropout alone is always preferable to us-
ing Augmentation +Weight Decay.

The most effective method across both datasets is Augmen-
tation +Weight Decay +Dropout. The results collected demon-
strate its superiority over the other six strategies. However, it

should be noted that it performs best given sufficient time. The
optimal values for p in this combination were 0.3 and 0.4, and
image rotation by 5 or 10 degrees proved beneficial. Moreover,
weight decay values of 0.0002, 0.000001, and 0.000006 were
identified as efficient.

Overall, our results show that dropout outperforms both
augmentation and weight decay similar to the results presented
by Moradi et al. [5] and Tian and Zhang [30]. Also, in terms of
convergence weight decay outperforms dropout and augmenta-
tion similar to the results obtained by Moradi et al. [5] and Tian
and Zhang [30].

6. Conclusion

In this study, we assessed the performance of three regular-
ization strategies – Dropout, Weight Decay, and Augmentation
– alongside their various combinations, utilizing a straightfor-
ward CNN model across two distinct datasets. The effective-
ness of these methods was evaluated concerning dataset size
and the total number of training epochs. This evaluation pro-
vided insights to address three specific research questions, RQ0,
RQ1, and RQ2. Findings indicate that Dropout outperforms
Weight Decay and Augmentation (RQ0), and among the var-
ious strategy combinations, Dropout coupled with Augmenta-
tion leads to superior results (RQ1). When all three techniques
are combined, they surpass the individual methods in effec-
tiveness (RQ2). Additionally, it was noted that Weight Decay
achieved quicker convergence than the other methods, while
the tripartite combination demonstrated a slower rate of con-
vergence.

Future research should investigate the balance between ac-
curacy and convergence speed to better understand the implica-
tions of these techniques in model training.

References

[1] G. E. Hinton, S. Osindero & Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006. https://europepmc.org/article/med/16764513.

[2] Y. Lecun, L. Bottou, Y. Bengio & P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE 86 (1998)
2278. https://ieeexplore.ieee.org/document/726791.

[3] A. Graves, Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850. (2013). https://arxiv.org/abs/1308.0850.

[4] Y. Bengio, P. Simard & P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult”, IEEE Transactions on Neural Networks
5 (1994) 157. https://ieeexplore.ieee.org/document/279181.

[5] R. Moradi, R. Berangi & B. Minaei, “A survey of regularization strategies
for Deep Models”, Artificial Intelligence Review 53 (2019) 394. https:
//link.springer.com/article/10.1007/s10462-019-09784-7.

[6] M. Nielsen, Neural Networks And Deep Learning, Determina-
tion Press, San Francisco, CA, USA, 2015, pp. 15 – 24. http://
neuralnetworksanddeeplearning.com/

[7] P. Y. Simard, D. Steinkraus & J. C. Platt, Best practices for con-
volutional neural networks applied to visual document analysis,
Seventh International Conference on Document Analysis and Recog-
nition, Edinburg, United Kingdom, 2003. https://www.researchgate.
net/publication/220860992 Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis.

[8] A. Krizhevsky, I. Sutskever & G. E. Hinton, “ImageNet classification with
deep convolutional Neural Networks”, Communications of the ACM 60
(2017) 84. https://dl.acm.org/doi/10.1145/3065386.

10

https://europepmc.org/article/med/16764513
https://ieeexplore.ieee.org/document/726791
https://arxiv.org/abs/1308.0850
https://ieeexplore.ieee.org/document/279181
https://link.springer.com/article/10.1007/s10 462-019-09784-7
https://link.springer.com/article/10.1007/s10 462-019-09784-7
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://www.researchgate.net/publication/220860992_Best_Practices_for_Convolutional_Neural_Networks_Applied_to_Visual_Document_Analysis
https://www.researchgate.net/publication/220860992_Best_Practices_for_Convolutional_Neural_Networks_Applied_to_Visual_Document_Analysis
https://www.researchgate.net/publication/220860992_Best_Practices_for_Convolutional_Neural_Networks_Applied_to_Visual_Document_Analysis
https://dl.acm.org/doi/10.1145/3065386


Liman et al. / J. Nig. Soc. Phys. Sci. 6 (2024) 1911 11

[9] G. Hinton, S. Nitish, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature de-
tectors”, arXiv preprint, 2012. https://www.researchgate.net/publication/
228102719 Improving neural networks by preventing co-adaptation
of feature detectors.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, C. Aaron & Y. Bengio, “Generative adversarial nets”, in Advances
in Neural Information Processing Systems, 2014, pp. 2672-2680. https:
//arxiv.org/abs/1406.2661.

[11] L. Prechelt, “Early stopping — but when?”, in Lecture Notes in Computer
Science, Germany, pp. 53–67, 2012. https://link.springer.com/chapter/10.
1007/978-3-642-35289-8 5.

[12] Y. A. LeCun, L. Bottou, G. B. Orr & K. R. Müller, “Efficient backprop,”
Lecture Notes in Computer Science, Springer Verlag, 2012, pp. 9–48.
https://link.springer.com/chapter/10.1007/978-3-642-35289-8 3.

[13] L. Breiman, “Bagging predictors”, Machine Learning 24 (1996) 123.
https://link.springer.com/article/10.1007/BF00058655.

[14] S. Ioffe & C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, Proceedings of the 32nd In-
ternational Conference on Machine Learning (ICML), 2015, pp. 448–456.
https://arxiv.org/abs/1502.03167.

[15] A. Krizhevsky, I. Sutskever & G.E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks”, Advances in Neural Information
Processing Systems (NIPS) 25 (2012) 1097. https://dl.acm.org/doi/abs/
10.1145/3065386.

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso”, Journal
of the Royal Statistical Society: Series B (Methodological) 58 (1996) 267.
https://academic.oup.com/jrsssb/article/58/1/267/7027929.

[17] T. Hastie, J. Friedman & R. Tisbshirani, The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, Springer,
New York, 2017, pp. 1–758. https://link.springer.com/book/10.1007/
978-0-387-84858-7.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever & R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting”, The Journal Of Machine Learning Research 15 (2014) 1929.
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?
utm content=buffer79b43&utm medium=social&utm source=twitter.
com&utm campaign=buffer,.

[19] H. Peng, L. Mou, G. Li, Y. Chen, Y. Lu & Z. Jin, A comparative
study on regularization strategies for embedding- based Neural Networks,
Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, Lisbon, Portugal, (2015). https://aclanthology.org/
D15-1252.pdf.

[20] F. Kamalov & H. H. Leung, Deep learning regularization in imbalanced
data, 2020 International Conference on Communications, Computing,
Cybersecurity, and Informatics (CCCI), United Arab Emirates, 2020.
https://ieeexplore.ieee.org/abstract/document/9256674.

[21] I. Marin, A. Kuzmanic Skelin, & T. Grujic, “Empirical evaluation of the
effect of optimization and regularization techniques on the generalization
performance of deep convolutional Neural Network”, Applied Sciences
10 (2020) 7817. https://www.mdpi.com/2076-3417/10/21/7817.

[22] M. D. Zeiler & R. Fergus, Visualizing and understanding Convolutional
Networks, Computer Vision - ECCV 2014: 13th European Conference
and proceedings, Zurich, Switzerland, 2014, pp. 818–833. https://link.
springer.com/chapter/10.1007/978-3-319-10590-1 53.

[23] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2016. https://link.springer.com/in/book/9780387310732.

[24] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio,
Identifying and attacking the saddle point problem in high- dimensional
non-convex optimization, Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems, United States, 2014, pp.
2933–2941. https://arxiv.org/abs/1406.2572.

[25] I. Goodfellow, Y. Bengio & A. Courville, Deep Learning, MA: MIT
Press Ltd, Cambridge, 2017. https://mitpress.mit.edu/9780262035613/
deep-learning/.

[26] E. M. Raouhi, M. Lachgar &A. Kartit, Comparative study of regression
and regularization methods: Application to weather and Climate Data,
Proceedings of the 6th International Conference on Wireless Technolo-
gies, Springer Singapore, 2021, pp. 233–240. https://link.springer.com/
chapter/10.1007/978-981-33-6893-4 22.

[27] W. Swastika, R. B. Widodo, G. A. Balqis, & R. Sitepu, The effect of
regularization on deep learning methods for detection of malaria infec-
tion, 2021 International Conference on Converging Technology in Elec-
trical and Information Engineering (ICCTEIE),Bandar Lampung, Indone-
sia, 2021. https://ieeexplore.ieee.org/abstract/document/9650646.

[28] E. Bakshy, L. Dworkin, B. Karrer, K. Kashin, B. Letham, A. Murthy, S.
Singh, AE: A domain-agnostic platform for adaptive experimentation, In
32nd Conference on Neural Information Processing Systems, Montreal,
pp. 1-8, 2018. https://eytan.github.io/papers/ae workshop.pdf.

[29] J. Mockus, V. Tiesis, A. Zilinskas, “The application of Bayesian
methods for seeking the extremum”, Towards Global Optimisation
2 (1978) 117. https://www.researchgate.net/publication/248818761 The
application of Bayesian methods for seeking the extremum.

[30] Y. Tian & Y. Zhang, “A comprehensive survey on regularization strategies
in Machine Learning”, Information Fusion 80 (2022) 146. https://www.
sciencedirect.com/science/article/abs/pii/S156625352100230X.

11

https://www.researchgate.net/publication/228102719_Improving_neural_networks_by_preventing_co-adaptation_of_feature_detectors
https://www.researchgate.net/publication/228102719_Improving_neural_networks_by_preventing_co-adaptation_of_feature_detectors
https://www.researchgate.net/publication/228102719_Improving_neural_networks_by_preventing_co-adaptation_of_feature_detectors
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://link.springer.com/chapter/10.1007/97 8-3-642-35289-8_5
https://link.springer.com/chapter/10.1007/97 8-3-642-35289-8_5
https://link.springer.com/chapter/10.1007/97 8-3-642-35289-8_3
https://link.springer.com/article/10.1007/BF 00058655
https://arxiv.org/abs/1502.03167
https://dl.acm.org/doi/abs/10.1145/3065386
https://dl.acm.org/doi/abs/10.1145/3065386
https://academic.oup.com/jrsssb/article/58/1/267/7027929
https://link.springer.com/book/10.1007/978- 0-387-84858-7
https://link.springer.com/book/10.1007/978- 0-387-84858-7
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,
https://aclanthology.org/D15-1252.pdf
https://aclanthology.org/D15-1252.pdf
https://ieeexplore.ieee.org/abstract/document/9256674
https://www.mdpi.com/2076-3417/10/21/7817
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/in/book/9780387310732
https://arxiv.org/abs/1406.2572
https://mitpress.mit.edu/9780262035613/deep-learning/
https://mitpress.mit.edu/9780262035613/deep-learning/
https://link.springer.com/chapter/10.1007/978-981-33-6893-4_22
https://link.springer.com/chapter/10.1007/978-981-33-6893-4_22
https://ieeexplore.ieee.org/abstract/document/9650646
https://eytan.github.io/papers/ae_workshop.pdf
https://www.researchgate.net/publication/248818761_The_application_of_Bayesian_methods_for_seeking_the_extremum
https://www.researchgate.net/publication/248818761_The_application_of_Bayesian_methods_for_seeking_the_extremum
https://www.sciencedirect.com/science/article/abs/pii/S156625352100230X
https://www.sciencedirect.com/science/article/abs/pii/S156625352100230X

