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Abstract

In this work, a collocation technique is used to determine the computational solution to fractional order Fredholm-Volterra integro-differential
equations with boundary conditions using Caputo sense. We obtained the linear integral form of the problem and transformed it into a system
of linear algebraic equations using standard collocation points. The matrix inversion approach is adopted to solve the algebraic equation and
substituted it into the approximate solution. We established the uniqueness and convergence of the method and some modelled numerical examples
are provided to demonstrate the method’s correctness and efficiency. It is observed that the results obtained by our new method are accurate and
performed better than the results obtained in the literature. The study will be useful to engineers and scientists. It is advantageous because
it addresses the difficulty in tackling fractional order Fredholm-Volterra integro-differential problems using a simple collocation strategy. The
approach has the advantage of being more accurate and reducing computer running time.
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1. Introduction equations). Many prominent mathematicians, such as
Liouville, Grunwald, Riemann, Euler, Langrange, Heaviside,

Fractional calculus is an aspect in mathematics that studies Fourier, Abel, and others, established fractional calculus on
the properties of integrals combined with noninteger order  , formal foundation[1]. Very recently, scholars developed
derivatives.The concept and method of solving differential  pyge interest in fractional calculus due to its relevance and
equations containing fractional derivatives of unknown  ah5lication to many areas of scientific endeavors. Fractional
functions are covered in this field (fractional differential differential equations, or those containing real and complex
order derivatives have been more significant in describing the
most broad fields of science and technology with peculiar

*Corresponding author tel. no: +2348077092831 . . . .
dynamics of various processes involving complex systems [2].
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Many different approaches have been adopted to investigate
the solution of fractional integrodifferential equations, such as
Adomian decompositions method [3-5], collocation method
[6, 7], Laplace decomposition method [8, 9], Taylor
expansion method [10], Least square method [9], differential
transform method [11], homotopy perturbation method [12-18],
sinc-collocation method [15-17] and variational iteration
method [12, 13]. Linna et al. [20] considered a
numerical method to solve fractional variational problem.
They simplified the fractional variational problems by the
operational matrices. The operational matrices are based
on the Chelyshkov polynomials. The fractional variational
problem was transformed into a set of algebraic equations.
The unknown coefficients were solved using the Lagrange
multiplier techniques. Avct & Mahmudov [19] proposed
a numerical method based on the fractional Taylor vector
for solving multi-term fractional differential equations. The
main idea of this method was to reduce the given problems
to a set of algebraic equations by utilizing the fractional
Taylor operational matrix of fractional integration. Some
numerical examples were given to demonstrate the accuracy
and applicability. The results show that the presented method
was efficient and applicable. Fadugba [21] presented the
Mellin transform for the solution of the fractional order
equations. The Mellin transform approach occurs in many
areas of applied mathematics and technology. The Mellin
transform of fractional calculus of different flavours; namely
the Riemann-Liouville fractionalderivative, Riemann-Liouville
fractional integral, Caputo fractional derivative and the
Miller-Ross sequential fractional derivative were obtained.

In this study, we consider Fredholm-Volterra
Integrodifferential equation of fractional order of the the
form:

Dy(x) = P1y (x) = P2y’ (x) = Poy(x)

=g(x)+mf0 ki (e 0)y (1) di

1
w2 [ G0y, M
0
with the given boundary conditions

y(a) =0, y(b) =

where y(x) is to be determined, DY is the Caputo’s derivative,
ki (x,1) and

k> (x,t) are the Fredholm and Volterra integral kanel function
respectively. P; P,, A;are known constants. g(x) is the known
function

0,a<x<b, 2)

2. Basic Definitions

Under this section, we present some definitions and basic
concepts of fractional calculus for the formulation of the given
problem

Definition 2.1: The Caputo derivative with order & > 0 of the

given function f(x), x € (a,b) is defined as [ Litfi, Dehghan

and Yousefi, 2011]
Dgy(n) = f (x— )"y ™ (s)ds, 3)

wherem—1 <a<m,meN,x>0

Definition 2.2: Let (a,),n > 0 be a sequence of real numbers.

The power series in x with coeflicients a, is an expression [
Edward, Ford and Simpson, 2002]

yx) = (10+Cllx+a2x2+a3x3+...aNxN
N
= = ¢(x) A, )
n=0
where ¢(x) =[1 x x* -+ XM, A=[a a an]”",

then y(x,n) = x"A, n =0(1)N, ne Z*.

Definition 2.3: Standard Collocation Method (SCM). This
approach is used to find the collocation points that are desired
within a certain interval. i.e [a,b] and is given by

N Gl N (5)
N

Definition 2.4: A metric on a set M is a functiond : M XM —
R with the following properties. For all x,y € M

(@) d(x,y) 2 0;

®) dlx,y) =0=x=y

(©) d(x,y) = d(y, x)

(d) d(x,y) <d(x,2) +d(x,y)

If d is a metric on M, then the pair (M, d) is called a metric
space.

Definition 2.5: Let (X, d) be a metric space, A mapping T :
X — X is Lipschitzian if 3 a constant L > 0 such that
d(Tx,Ty) < Ld(x,y) VY x,y € X.

Definition 2.6: Let y(x) be a continuous function, then

) (0
off (D) = y(0) - Zy D, ©)

wherem—1 < < 1.
Let p(s) be an integrable function, then

f = 9P pls)ds. ™
0

1
5 -
ol (p(s)) = %)

3. Mathematical Background

In this section, combination of collocation method and
power series approximation is employed for the computational
solution of (FVID) of fractional order.

Theorem 3.0: Banach’s fixed point theorem Let (X,d) be
a complete metric space, then each contraction mapping 7 :
X — X has a unique fixed point x of 7" in X, such that T'(x) = x
Lemma (3.1). Let y(x) be the solution to (1) subject to (2), the
integral form

X

1 .
We+ ps | e " (P (9))ds  (8)

y(x) = @
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F(a) f (x — 5)*! (Ply (s)) ds

r( ) f (r— 9 (Poy(s)) ds

- f (= 5" l[m f ki (s.0)y (1) di
1

+/12f kg(s,t)y(t)dt}
0

where
® 0
w()-zy O u F()f(x—s)“‘g(s)ds

Multiply equation (1) by Ql'f(.) gives

oI2 (D°y(x)) = ol (Poy" () + ol (P1y (5))
+oI% (Poy(s)) —o 1§ (g(x))

— ol [41 f k(5. 0y () di
0

1
+ A f ko (s5,8)y (1) dt] . C)
0

Using(6) on equation (9)gives

e >—Zy O it Py )

+ ol (Ply (5)) +0 1% (Poy(s)) (10)

b
ok (g(x) + of? ( fo ki (x, r>y(r)dt)

+ol? ( f ' k(s, t)y(t)dt)
0

Applying equation (4) and (7) to (10) gives

(k)
()_Zy (O)Xk

F( ; f (r= )" Py (6(5)") dsA
+@ fo (x = )" Py (¢(s) ) dsA
+% f (= 97 Py (9(5)) dsA
e f (= 97 (g(s)) ds

a—1
F(a)f (=) [alfkm Dowdi (1)

+A, f ky (s, 1) p(t) dt} dsA
0

3.1. Method of Solution
Collocatiing at x; in equation (11) gives

®(0
y(x ,)—Zy ()x"

fo f (6= 97" P (0(s)" ) dsA

r( o [ ooty asa

+ Ta) f (xi = )7 Po (¢(s)) dsA

o f (i - 9 (g(s)) ds

el
m]@‘ (xz S) [/1] ﬁ kl (S, z‘) ¢(t) dt (12)

1
+1 f ks (s, 1) $(t) dt] dsA
0

Applying (4) on (12) gives
P(x)A = W(x;)
#(Y) foxi (xi — )L P, (¢(s)”)ds+
ﬁ foxi (xi — )" ' P (¢(s)/) ds+
+ 5 o i = 97 Py (8(s) ds
= s G = 9 (A [ R (D (1) dt
2o [ ko (1) 900 dt) ds

A, (13)

(- 9% g(s)ds.
k=0 0

Factorise the values of A from equation (13) gives
[0 = g fo' (i = )" Py (9(5)") ds— |

r(a) fo (x, ) Py (¢(S) )ds—

W = = )" Po (§(5)) ds N
() = r(ln) i)™ S

(4 [y ki (s, 00) it
+ 2o [ ko (5,0 6(0) dt) ds
Equation 14 can be in the form

Ta(x)A =W(x)), s)

where

F(w) 0

003) = 1 Jy (i = )7 Pa(6(5)") ds~

s o i = )7 Py ((s)) ds—
T =] R el L o1
m [ = 9 Po (@) ds + 1 7 (i 9)
(ﬂl Rk (.0 ¢@y de + 5 [) ko (5.0 6(0) dt)ds,
and
A=[ay a; -+ ayl".

Multiply both sides of equation(15) by, ! (x;) gives
A =7, ()W (xy). (16)
Substituting A into the approximate solution (4) gives

y(x) = ¢x)T, " () W) a7
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4. Uniqueness of the Method

In order to establish the uniqueness of the method, we introduce
the following hypothesis

H, k = rr%éaxf Ay k1 (x, 1)l dt

1
Hy @ ky= max f 2, ko (x, )| dt
<l0.11 Jo

Hy @ P =y < Lulyi -yl

Lemma (4.1) (g-contraction) Let 7 : X — X be a mapping
defined by theorem (3.0) for y;, y» € X. T is g-contraction if
and only if

[zﬁo L, — (k; + k) »

INae+1)

then there exist a unique solution of 7.
() (9= W) + s f (= 57 (Pay] () ds
1 * o ,
+@ f(; (x—19) 1 (Plyl(s))ds
1 X
+ﬁ [ =9 s

T f (x —5)"" l[al f ki (s,0)y1 (1) dt

1
+/12f ky (s, D)y (t)dt]ds
0

and
(Ty,) (x) = W(x)+ﬁ f (x = )" (Payy(s)) ds
+% [ o (P as
r( ) f (x = 5" (Poya(s) ds
@ f (x = 8)* 1[11 f ki (s, 1)y, (t) dt
+Ay fol ky (s,0) y2 (1) dt] ds.

Thus,

[(Ty1) (x) = (Ty2) ()|
1 X . ;
= m j(: ()C - S)(l—l P2 |y1 (S) —yz(s)ids
1 X , )
+ﬁ f (x— S)Ut—l P, |y1(s) _yz(s)| ds
f (x— 8" 1 Py [yi1(s) — y2(s)|ds

f(,l Al (s, Dl 1 (1) = ya(0)l it
+ [ Ao, D101 (@) = y2()) dit

l"()
(X— )ar 1

1
T(@)

Taking maximum of both sides and using H, to Hj3 gives

L, + L +L0—(k7 +k§)
I'ae+1)

d(Ty(x), Ty:(x)) < [ d(y1,y2)

Since T is a contraction

[ Yoo Ln— (k) + )

<1.
I'a+1)

We can conclude that T has a unique solution.

5. Convergence Analysis

We establish the convergence of the method

X

1 .
We+ o | e )7 (Payy(9)) ds

['(a)
1 X - /
+mj(; (x—19) 1(PlyN(s))ds

1 X
+ﬁ f (x= 9 (Poyn(s)) ds

o f (x— 9 1[11 f ki (s, 0)yy (1) dt

1
+A5 f ky (s, 1) yy (2) dt} ds.
0

v (x) =

(18)

Subtract (8) from (18) gives

En(x) = yn(x) = y(x).
Hence
1 X
Ex(] = s f (r— 9 |En(s) (P2 + P\ ds
a—1
r(a)f (x=9)
| f k1 (s,r>EN<r)dt‘
0
1
+ 45| f ko (s,t) En()dt|ds
0
(20)
Therefore
IEN(lls _ f ot
ExOle ST@ Jy &7

|En(s) (P2 + Pyl
_#a}j(; (x— S)a—l
X (I/lll | ki (s.0) En()dt]
ol ) ko (5. 0) Ey ()]

ds.

% The method converges
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6. Numerical Examples

In this section, two numerical problems with boundary
conditions are presented to text the efficiency and simplicity of
the method. All computations are done with the aid of Maple
18. Let y,(x) and y(x) be the approximate and exact solution
respectively. Errory = [y,(x) — y(x)|
Example 1:

Considering fractional integro-differential equation [17]

1 1
Y (%) + =D y(x) + —y(x) = f (%)
X X

X 1
+ f sin (x — #) y(t)dt + f cos(x—1)y()dt,
0 0
subject to the boundary conditions
¥(0) =0, y(1)=0
where

f(x) =5+ 1.50451x" — 13x — 1.80541x"'?
—x> + x* = 2.067xcos(x) + 5.95385 sin(x).

Exact solution y (x) = x* (1 — x)

Solution 1

We solve this problem at N = 3 and 5 but we use N = 3 for
demonstration. Integral form of example 1 is

-0.5 (1) -
Y () + = (F(l OS)f (x-1 (t)dt)+ 5 (%)
= f(x)+ f sin (x — ) y()dt + f cos (x — 1) y (£) dt(21)
0
Using approximate solution (4) on (14) gives

¢" () + (s o =07 L (p(0)at)

+5¢"(x) = [ sin (x = 1) g(0)dt A=fx) (22)
— [Feos (x— ) (1) dt
Equation (15) gives
(DA =f(x), (23)
where
o) ¢" @) + 1 (rdom Jo (6= 07 (@0)dr)
+5¢"(x) - [ sin (x = 1) ¢(0)dt - fo cos(x — 1) ¢ () dt.
Collocating at x3 = [% % 1] and substituting the
boundary conditions gives
T(0)"A =f(x)", (24

where
8.1837497830  4.5298367530
1.0664602830  2.3357941530  3.8888778550  5.4288519160
103011686789  1.5101524580  4.1068429140  8.5147669310
1 0 0 0
1 1 1 1

3.5647166670  2.4321976680

Ti(x) =

Table 1. Exact and approximate values, Example 1

X Exact N=3 N=5
0.2 0.032000000000 0.031999821270 0.031999851830
0.4 0.096000000000 0.095999891010 0.095999961860

0.6  0.144000000000
0.8 0.128000000000
1.0 0.000000000000

0.143999795600
0.127999546700
-8.444000000000e-7

0.143999892900
0.127999648400

-7.382000000000e-7

Table 2. Absolute Error for Example 1

X €ITor3 €IT0r'5 CITOr [17]=32
0.2 -1.787300000000e-7  -1.481700000000e-7 2.048e-5
0.4 -1.089900000000e-7  -3.814000000000e-8 2.503e-5
0.6 -2.044000000000e-7  -1.071000000000e-8 1.789%e-5
0.8 -1.071000000000e-7  -3.516000000000e-8  7.682e-6

1 -8.444000000000e-7  -7.382000000000e-8 3.034e-6

f(x):[ 1.1325152410  -1.5399784720  -4.4079289640 0 O ]

We now solve for the unknown values A (17) making use of
matrix inversion results in;

o

Applying the same procedure for N = 5 gives

—4.2497275388 x 1077 + 0.16917¢ — 5x+
0.9999976497x> — 0.9999997608 x>

-1.0000070682x° + 0.57092¢ — 5x* — 0.16454¢ — 5x°

ys = ( —3.4773620430 x 1077 + 8.9350760390 x 107 x + 1.0000017198x2
s =

Example 2

Considering fractional integro-differential equation [17]

X 1
Y (xX)+Diy(x) = f(0)+2 | (x—1) y(t)dt+f <x2 - t)y (t)dt
0 0
with the given boundary conditions
y(0)=0, y(1)=0

where

1 181x2 X i

fO)==35 68+ g+ -5+ 3

Exact solution y (x) = x* (x — 1)

Solution 2

We solve this problem at N = 4 and 5, however, make use of
N = 4 for demonstration.
Integral form of example 2 is

" 1 0@
y (x)+(r(2_1) [ =0t (t)dt) 25)

X 1
= f(x)+2f(x—t)y(t)dt+f(xz—t)y(t)dt
0 0

|
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Table 3. Exact and approximate values, Example 2

X Exact N=4 N=5

0.2 -0.6400000000e-2  -0.6400000000e-2
0.4 -0.3840000000e-1  -0.3840000000e-1
0.6 -0.864000000e-1  -0.8640000000e-1
0.8 -0.1024000000 -0.1024000000
1.0 -0.9000000000e-3  -0.900000000e-3

-0.6400000000e-2
-0.3840000000e-1
-0.8640000000e-1
-0.1024000000
-0.900000000e-3

Table 4. Absolute Error for Example 2

X  errory  errors  eITor [17)=64
0.2 0.0 0.0 2.931e-7
0.4 0.0 0.0 3.915e-7
0.6 0.0 0.0 2.696e-7
0.8 0.0 0.0 1.011e-7
1 0.0 0.0 3.596e-8

Using approximate solution (4) on (18) gives

¢" @)+ (755 = 0" L (e0)dr)
2 [F -0t - [ (2 =1)¢@)dr

Equation (6.6) gives
T(DA =f(x) 27

]A =f(x).  (26)

where

¢ () + (7 o (= 0° £ (e()dt)

M= - newd - [ (2 - ) (.

Collocating at x4 = [0 le % % 1 ] and
substituting the boundary conditions gives
* *
T(x)"A =f(x) (28)
where
1 03333333333 2.250000000 02000000000  0.1666666667
i £} 4193 19169 59393
2 4 gg 04 2960
. = I 37 1851 64211 522457
2 6 12 20 30
1 0 0 0
1 1 1 1 1
_[ -1 _ss621 131 137191 419
f) = [ 3% 6440 40 oa0 e O O ]

We solve for the unknown values A using matrix inversion,
results;

~2.2211399390 x 1013
~ +3.0783153800 x 10~'2x
ya = —1.4125589590 x 107112
~1.0000000000x3 + 1.0000000000x*

Applying the same procedure for N = 5 gives

5.329070518000 x 107!
+1.781685910000 x 10~'2x
| -1.580957587000 x 10115
Y5 = —~1.000000000000x
+1.000000000000x*
+1.062971933000 x 10715

7. Conclusion

Collocation approach is utilized to solving the fractional order
Fredholm-Volterra integro-differential problems in this paper.
The applied method is consistent, efficient and easy to compute.
The results of the numerical example 1 as shown in table 1
shows that the approximate solution at N = 3 gives y3(x) =
—4.2497275388 x 1077 + 0.16917¢ — 5x + 0.9999976497 x> —
0.9999997608x° and solving at N = 5 indicates that as the value
of N increases, the error becomes smaller. We also compare our
absolute errors with Alkan et al (2017) as shown in table 2, this
clearly shows that our method performs better. The results of
the numerical example 2 as shown in table 3 shows that the
approximate solution obtained at N = 4 and 5 converges to
the exact solution. Table 4 compares the errors in the method
proposed by Alkan et al (2017) at N = 64 and errors in our new
method which converges to the exact solution at N = 4.
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