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1. Introduction is formulated as finding a point x* € E| with the property

Throughout this paper, E; and E; are uniformly convex and LA .~
uniformly smooth Banach spaces. Let us make some conven- X € ﬂ Ciand Ax™ € ﬂ Q) (D
tions: we always use p,q € (1,00) as conjugate exponents so =1 j=1

[ o Ty
that 7+ =1, whereby ¢ = . 5. pg = p+q. (p=Dq-D = 1. pegnition 1.2. [2] If ina MSSEP (1) p = r = 1, we get what

Furthermore, for real yalge a,b, we write a vV b = max{a, b_} ar}d is called the split feasibility problem (SFP), which is to find a
a A b = min{a, b} which is to be understood componentwise in Lk .
point x* € E, with the property

case of sequences and pointwise in case of functions.

Throughout this paper, let p,r > 1, given sequences of x* € Cand Ax" € Q. )
nonempty closed convex subsets {Ci}le and {Q;}!_, of E; and
E», respectively, Definition 1.3. [3] Split common fixed point problem (SCFPP)

.. . . . is formulated as finding a point x* € Ey, with the property
Definition 1.1. /7] Multiple set split feasibility problem (MSSFP)

p r
X' e ﬂ Fix(U;) and Ax* € ﬂ Fix(T ),
*Corresponding author Tel. no: +2348062814778 i=1 Jj=1
Email address: danustazz@gmail.com (Yusuf Ibrahim)

where each U; : E\ — E\ (i=1,2,---p)and T; : E; — E;
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(j=1,2,---r) are some (nonlinear) mappings.

Definition 1.4. [3] two-set SCFPP is formulated as finding a
point x* € E|, with the property

x* € Fix(U) and Ax" € Fix(T) 3)

where U : E; — Eyand T : E, — E, are (nonlinear)
mappings.

As stated in [4], let E be a Banach space with norm || -||. Let
C be a nonempty closed convex subset of E and E* denote the
dual space of E. Let B : C — E™ be a nonlinear mapping and

F : C x C — R be a bifunction. The generalized equilibrium
problem is to find x € C such that

F(x,y)+(Bx,y—x)>0VyeC. “4)

Now, let

F(x,y) = f(x,y) + g(x, y) (&)

where f,g : C x C — R are two bifunctions satisfying the
following special properties (A;) — (A4), (B1) — (B3)and(C);

(A1) - fx,y) =0,YxeC;
(A,) — fis maximal monotone;
(A3) — Vx,y,z € Cwe havelimsup, - (f(tz + (1 = £)x,y)
< fy);
(A4) — Vx € C, the functiony — f(x,y)is convex and
weakly lower semi-continuous;
(B1) —g(x,x) =0Vx € C;
(B,) — gis maximal monotone and monotone,
and weakly upper semi-continuous
in the first variable;
(B3) — gis convex in the second variable;
(C) — for fixedA > Oandx € C, there exists a bounded set
K c Canda € Ksuch thatf(a, z) + g(z,a) + %(a —-7,2—X)
< 0Vx e C\K.

(6)
The well known generalized mixed equilibrium problem is
to find an x € C such that

S, y) +g(x,y) +(Bx,y —x) 2 0¥y e C. @)

If B = 0, the problem (7) reduces into mixed equilibrium
problem for f and g, denoted by MEP(f, g), which is to find
x € C such that

SO, y) +g(x,y) 20,¥y € C. (8

If g = 0 and B = 0, (7) reduces into equilibrium problem for f,
denoted by EP(f), which is to find x € C such that
fx,y)>20VyeC. 9)

In 1994, the SFP (2) was introduced by Censor and Elfving
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[1]. Using the CQ-algorithm for solving the SFP (2), in 2002
Byrne [2] proposed that which generates the new iterate as fol-
lows

choosing arbitrarily x; € Hy,

Xns1 = Pelx, — yAT(I = Pg)Ax,]

where y € (0, %), L denotes the largest eigenvalue of the matrix
ATA.

In 2004, Yang [5] presented a relaxed CQ-algorithm for
solving the SFP, where at n-th iteration, the projections onto
C and Q were replaced with the halfspaces C, and Q,, respec-
tively.

In 2005, Qu and Xiu [6] proposed a modified relaxed CQ-
algorithm

choosing arbitrarily x| € Hy,

X+t = Pe,[%, — @y AT (I = Pg,)Ax,).

In 2007, Frank Schopfer[7] developed iterative methods for
the solution of the SFP (2) in Banach spaces and also analyse
stability and regularizing properties. these iterative methods are
as follows.

choosing arbitrarily x; € E|,
Xn+l = le (JE| (xn) — llnA*JEg(Axn - PQ(Axn))~

The concept of SCFPP in finite dimensional Hilbert spaces,
say H, and H,, was first introduced by Censor and Segal in
2009[1], who invented an algorithm of the two-set SCFPP which
generate a sequence {x,} according to the following iterative
procedure:

choosing arbitrarily x; € Hy,
Xpp1 = Ulxy +yA*(I — T)Ax,),n > 1

where the initial guess xo € H; is chosen arbitrarily and 0 <
v < W and A : Hi — H, as a bounded linear operator hav-
ing A* as the adjoint operator of A. And U : Hy — H, and
T : Hy — H, are (nonlinear) mappings.

In 2010, Moudafi [8] proposed the following iteration method
to approximate a SCFPP of demicontractive mappings in Hilbert
spaces;

x1 € H, is arbitrarily chosen,
Uy = x, + yA*(I — T)Ax,,

Xpi1 = Aty + (1 — @) Uuy,

(10)

where he proved that {x,} converges weakly to a split common
fixed point x* € I, where U : Hf — Hyand T : H, — H»
are two demicontractive mappings, A : H; — H; is a bounded
linear operator and H; and H, are two Hilbert spaces.

Using the iterative scheme (10), in 2011, Moudafi[8] also
obtained a weak convergence theorem for the split common
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fixed poin problem of quasi-nonexpansive mapping in Hilbert
spaces.

In 2012, Chang et al. [9] again, using (10) proved the
weakly convergence of the sequence {x,} to the split common
fixed point x* € I of asymptotically quasi-nonexpansive map-
ping in Hilbert spaces. But these authors could only obtain
strong convergence theorem if those mappings and spaces are
semi-compacts and Hilbert spaces, respectively.

In 2015, Zhang et al [10] introduced the iterative scheme
which guarantees the strong converges for SCFP of the asymp-
totically nonexpansive mapping in Hilbert spaces, without as-
sumption of semi-compactness. The sequence is defined as fol-
lows;

choosing arbitrarily x; € H;,C| = Hj,

Zn = Xp + AAY(TS — DAX,,

Yn = @nZp + (1 = )T (),

Crir = {v € Cy 2 llyn — VIl < knllzn = VI, llzn — VIl < Kallxa = vII},
Xpe1 = P, (x1),n 2> 1

n+l1

where A* denote the adjoint of A, 1 € (0, m) and {a,} C

(0,7) C (0, 1) satisfies lim,_c0 @n(1—ayn) > 0, ky = max{k'", k21,
n>1.

Takahashi [11], in 2015, also obtained a similar result for
split common null point problem by using the following hybrid
and shrinking projection methods, respectively.

choosing arbitrarily x| € Hy,

Zn = Pc(x, — rA*Jp(Ax, — PpAXxy)),
Yn = Xy + (1 = @)z,
Co={zeH :|lyn =zl < llxy —zll}s
On ={z€ Hy : {x; — 2, X1 — X») 2 0}
Xps1 = Pc,np,X1,Yn €N,

and
choosing arbitrarily x; € Hj,
Zn = Pe(xy = rA*Jp(Ax, — PoAxy)),
Co={z€H:|lz, -zl < llx, — 2ll} 0 C,
Xns1 = Pc,, Ups1,Vn €N,

where 0 < @, < a < 1 for some a € R and 0 < r||A|]> < 2.

In 2015, Tang et al.[12] introduced the split common fixed
point problem (SCFP) for an asymptotical nonexpansive map-
ping S and a T—quasi-pseudocontractive mapping T in the set-
ting of two Banach spaces, E; and E,, by using the sequence
{x,} defined as follows;

choosing arbitrarily x; € Ej,
Zn = Xp + YJT AT (T = DAx,,
Xn+l = (1 - a’n)zn + a'nSn(Zn)sn >1

where {@,} c (0, 1) with liminf,_,. @,(1 — @,) > 0,

Y € O, min{iG, G, L = sup,. ) and T2 (1, = 1) < oo,

In this paper, the modified algorithm of Zhang et al. for
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the solution of SCFP in Hilbert spaces is studied. Hence, the
Bregman generalized asymptotically nonexpansive mapping is
used to obtain the strong convergence for SCFPP (6) in uni-
formly convex and uniformly smooth Banach spaces, without
the assumption of semi-compactness property and or without
the assumption of Opial condition.

2. Preliminaries

Throughout this paper, the classes of Banach spaces we will
deal with are [13];

Definition 2.1. A Banach space E is said to be uniformly con-
vex, if 6g(e) = inf{1l = [l5(x + VI I = IVl = Lllx =yl > e,
where 0 < e <2and0 < 6g(e) < 1}.

Definition 2.2. A Banach space E is said to be uniformly smooth,
if lim,_o(222) = 0 where pp(r) = % sup{llx + Yl + Ilx = yll - 2 :
[Ix]l = 1,y £ ;0 < r < 00 and 0 < pg(r) < co}. Moreover,
1. pg is continuous, convex and nondecreasing with pg(0) =
Oandpp(r)<r

2. The functionr +— pE—r(r) is nondecreasing and fulfills "ET(” >

Oforallr >0

3. lim,o 222 = 0.

Throughout this paper, some important mappings we will
be using are;

Definition 2.3. [14] For each p > 1, let g(t) = t"~! be a gauge
function g : R* — R* such that g(0) = 0 and lim,_,, g(t) =
co. we defined the ganeralized daulity map by J, : E — 2F
by

Jaty = Jp(x0) = {x* € E*5 (6, &) = Il Il = gl = 1117~

The ganeralized daulity mapping has the following basic
properties [7].

Lemma 2.1. For every x € E the set Jg(x) is not empty and
convex.

Lemma 2.2. Jg(x) is homogeneous of degree p — 1, i.e.
JP(Ax) = AP sgn() I (x) Vx € E, A € R.

Lemma 2.3. IfJZ (x) is the duality mapping of E* with gauge
function t — 197! then x* € J0(x) iff x € J&.(x*).

Lemma 2.4. [7] In smooth Banach space, the Bregman dis-
tance of x to y with respect to the function f(x) = %lell” is
defined by

1 1
Ap(x,y) = =llxl” = (JP(x), y) + =Iyll”.
q P

Definition 2.4. Let E be a smooth Banach space. Let A, be
a Bregman distance. A mapping T : E — E is said to be
a Bregman generalized asymptotically nonexpansive with {k,}
and {u,} if there exists nonnegative real sequences {k,} and {u,}
Withlim, e k, = 0 and lim,,_,e pt, = 0 such that A ,(T"(x), T"(y))
<ky Ap (6, 9) + Ap(x, ) + 1y ¥ (x,y) € EXE.
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Definition 2.5. [15] Let E be a reflexive, strictly convex and
smooth Banach space. Then for every closed convex subset C C
E and x € E there exists a unique element Pc(x) € C such that
lx = Pc(x)ll = minyec [|x — | is called the metric projection of x
onto C. Moreover; if J? is a duality mapping of E, then xo € C
is the metric projection of x onto C iff

(JP(xg— x),y—x0) = 0¥y e C.

Definition 2.6. [7] Let E be a reflexive, strictly convex and
smooth Banach space and JP be a duality mapping of E. Then
for every closed convex subset C C E and x € E there ex-
ists a unique element 11%.(x) € C such that »,(x,1I}.(x)) =
minyec Ap(X,y). Hfj(x) is called the Bregman projection of x
onto C, with respect to the function f(x) = illxll”. Moreover
xo € C is the Bregman projection of x onto C iff

(JP(x0) = JP(x),y = x0) = 0
or equivalently

Dp(x0,Y) < Ap(x,y) — Ap(x, Xo) for everyy € C.

Lemma 2.5. [7] The Bregman projection and the metric pro-
Jjection are related via Pc(x) — x = HZ_X(O), Vx € E. Especially
we have Pc(0) = Hg(O) and thus ||HZ(O)|| = minyec |[yll-

The Bregman distance has the following properties [7].

Lemma 2.6. Vx,y € Eand{x,} € E, Ap(x,y) > 0and 2p(x,y) =
Oex=y

Lemma 2.7. Vx,y € Eand A > 0 Ap(=x,-y) = Ap(x,y) and
Ap is positively homogeneous of degree p, i.e. Ap(Ax,dy) =
AP A, (%, ).

Lemma 2.8. A, is continuous in both arguments and it is strictly
convex, weakly lower semicontinuous and Gateaux differentiable
with respect to the second variable with derivative % Ap(x,y) =
JP(y) = JP(x).

Lemma 2.9. A, satisfies the Three-point property that gener-
alizes the ”Law of cosines”:

Ap(x’y) = Ap(-x7 Z) + Ap(z7y) - <-x - pr - JpZ)

Lemma 2.10. Let X be reflexive, smooth and strictly convex.
Then for all x,y € X the following holds:

Ap(x,y) + Ap(y, X) = (JP(x) = JP(y), x = y)
Lemma 2.11. Consider the following assertions;
1. lim, o ||lx, — x| =0
2. 1imyeo [1Xall = llxl| and limy, 0o (J? (x,), X} = (JP(x), x)
3. limy 00 Ap(Xy, x) = 0.

The implication (1) = (2) = (3) are valid. If E is uniformly
convex then the assertions are equivalent.
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Lemma 2.12. Let us write A;(x*,y") = %le*llé* - Ly +
élly*ll%* for the Bregman distance on the dual space E* with

respect to the function f*(x*) = é||x*||%*. Then we have
Ap(x,y) = Dp(x", y").for x* = JE(x)

e JL(x)=xandy =J0(y) =y

e JLOM) =Y.

Lemma 2.13. Hé(x) maps bounded sets onto bounded sets;
more precisely we have

ITE Il < Q7 1xl) v GITIEO))Yx € E.

Throughout this paper, some important characteristic in-
equalities we will be using are;

Lemma 2.14. [16] In the case of uniformly convex space E,with
the duality map JP of E, Vx,y € E we have

llx = ylIP = (JP(x =), x = y)
2 [Ixl” = p{JP(x), y) + op(x, ).

with
1
(lx = tyll V [[xI])? Ayl
oo(x,y) = pK f 2 i
? ”Jo 1 E\2q1x = ayll v 11x1D)
where by

1 1
K, 42 + \/Z)min{zp(p— HA 1,(§p/\ D(p-1),
(p—DA=(V3=1)9),1-(1+@2- V3)9'™7).
Lemma 2.15. [16] In the case of uniformly smooth space, E,with
the duality map J? of E, Vx,y € E we have
llx = ylI” = (JP(x = y),x = y)
< Ixll? = p{IP(x), y) + Fp(x, ).

with
1
_ (Ilx =yl v [1xI)? ( fIyll )
a,(x,y) = pG f dt
rHY=PE t PE 201 = oyl v 1%l
where by
G, =8V 64cK;’
with
o1 1
K, = 42 + \/Z)mm{ip(p -DA 1,(§p AD(p-1),
(P-DI=(V3-1,1-(1+@2- V3)9)'™")
and
Ao = 15
c=4 H (1 + Wﬂo)

,/1+/l%—1 =1
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with
V339 - 18
30 '
Lemma 2.16. [17] Let E be a real uniformly convex Banach

space. For arbitrary r > 1, let B,(0) = {x € E : ||x|| < r}. Then,
there exists a continuous strictly increasing convex function

Ao =

g :10,00) — [0,00),g(0) =0

such that for every x,y € B.(0), fx € J,(x), f, € Jp(y), the
following inequality hold:

[ Ax+(1=DylI” < Al +A=DIylI = (AP (A=) +(1 =) D)g(llx=yll)

and,

=y, fx = Sy 2 glllx = yID.

Lemma 2.17. [17] Let E be a real uniformly smooth Banach
space. For arbitrary r > 1, let B,(0) = {x € E : ||x|| < r}. Then,
there exists a continuous strictly increasing convex function

g :[0,00) — [0, 00),g(0) =0

such that for every x,y € B,(0), f, € Jy(x), f, € J4(), the fol-
lowing inequality hold:

[x+A=D¥I? = A7+ A=DIylI? = (71 =D+(1=D)T Dg(|lx—yl)

and,

(x =y, fx = fy) < glllx = yID.

3. Main results

Theorem 3.1. Let E| and E, be two uniformly convex and
uniformly smooth Banach spaces, A : E; — E, is bounded
and linear operator such that A(C), for C C E, is closed and
convex, U : E; — E| be a uniformly continuous Bregman
generalized asymptotically nonexpansive operator with the se-

quences {kﬁll)} c [0, ) and {;1,(11)} C [0, 00) satisfying limk,(,l) =

0 and lim,uf,l) = 0, respectively, and T : E; — E, be a uni-
n—oo
formly continuous Bregman generalized asymptotically nonex-
pansive operator with the sequences {kﬁlz)} C [0, o) and {,uE,z)} -
[0, o) satisfying lim k,(lz) = 0 and lim ,uﬁlz) = 0, respectively,
n—oo n—oo

and, for p,q € (1, ), Hﬁc : E, — AC be a Bregman pro-
Jjection onto a subset AC, and Fix(U) # ¢ and Fix(HZCT) * ¢
respectively, and (I — U) and (I — H/pac T) be demiclosed at zero.
Let x; € E;| be chosen arbitrarily and let Cy = E| and the
sequence {x,} be defined as follows;

an = T (T, %n = A" (I = T T")Axy),
Yn = Jz»l« (a'n-]ii] (zo) + (1= a’n)JII;] (U"(z))),
Ci={veCy: Ap(yna v) < [k, + 1] Ap (Zn, V) + Un;

Ap(Zn, V) < Ap(xp, V),
= H'ém(xl),n >1

Y

Xn+1

39
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where
11
AT ] G-, om0 F 0
e B X L e P (12)
AP IE, =T, THAx 1P =
andy € (0,1)and 1, = W are chosen such that
e y YR A% Ax, — I, T"A,) 03
E* n = D k
! 249G |IAll el 1P, (T = Ty, TAX |

and A* denote the adjoint of A, and {a,} c (0,1) satisfies
liminfa,(1 —a,) > 0, k, = (P VD), n > 1. FT = {v €

n—oo
Fix(U) : Av € Fix(HZCT)} # ¢, then {x,} converges strongly to
x*eT.

Proof:
Assume that ||/l,,A*(J§2(I - HZC“T”)Axn)II =0 x, €T =
{x, € Fix(U) : Ax, € Fix(Il},.T)} # ¢ then from 11 we have
that z, = x, and A,(x,;,z,) = 0 and the conclusion follows
immediately.
Now assume that ||/l,,A*(.Ip2(I - HZC" TMAx,)|| # 0 then we will
divide the proof into five steps.
Step one: We first show that C, is closed and convex, for any
n>1.
By induction hypothesis;
since C| = E1, so C; is closed and convex.
Assuming that Cy, is closed and convex.
We show that Cy4 is closed and convex, for some k > 0.
We first show that Cy, is closed.
Let {x,,} be a sequence in Cy, such that x,, = vasn — oco. We
need to show that v € Cy,;. From 11 and continuity of Bregman
distance and the boundedness of {x,,}, we have that

Ap(zm v) = lim Ap (Zns Xm)
m—co

< lim Ay (X, Xp) = Ap(Xy, V). (14)

Similarly, we have that

A[l(ynav) = W{TZO Ap (ym Xim)

< lim ([k, + 1] Ap (@ns Xm) + pn) = [k, + 1](Ap(xn, V) + Uy,
(15)

From (14) and (15), we have that v € Cyy.

Next we show that Cy, is convex.

Let vi,vy € Cryq and £ € (0, 1); putting v = tv; + (1 — t)vy, it
suffices to show that v € Cy41. Let x; # 0, then

2p(2x, V) = Ap(zp, tvy + (1 = Hva)
1
q

— (I X = LA (T (I = T, THAX), vy + (1 = Do)
(16)

% 1
IV, 3k = e (1 = T THOARI + v+ (1 = el
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1 i 1 1
= zluf,’;xk - LA U =T THAG + Sl + (1= owall” =l = A, JE A =T THAX)
_ 14 _ 14 R 4 k 1
T, X v1 + (1= 0va) + (S, (I =TT THAX, 1y +_54H;mﬂhAv;U—I§QT%A@) (18)

+(1=0w). q

Where and
1 = *
A (T, (I =TI, TOAx vy + (1= 0)va) o TalE, Mo A" (1 =TT, T")Ax)
— P P k P k 4 k
= A, (I — I THAx, 1AV + (1 = DAV, + T T"Axy — Il T"Ax) V(G i =t AT (=TT TOA VIR, xill)?
= AR, U =T THAX, 1AV + (1 = DAv, =TI T*Axy) =Gy o 7 X
4 4 k 4 k *

+ A(J, (I =TI, TAx T - THAx) ) AT, (I =TI, THAX|
— k k * .
= AU, (I = I, THAx, 1AV, + (1 = Ay ~ T, T*Axi) F A2 = 1A T2 (1 =T, TOAXIV 12 )
+ AR, (I =T THAX, T TEAx, — Axi + Axy) (19)
= 4L (I =TI, THAx, tAv, + (1 = DAy, - TTE . T*A

k<( Ez( ACy, ) Xk V1 ( ) V2 ACy, xk> for every te [0, 1]
- A (I =TT, THAxy, ., T*Ax, — Axy)

But
+ AR, I =T THAY, Axy)
= A5, (I =T THAx, tAvy + (1 = DAV, = Axy + Ax — T THAx)
P, * 7P c1 _ TTP k
— A (1 = T, TYAR, Ax, — T, T Ax,) I, 2=t A" T, (I = I, THAX
—1 * gP 14 k

+ AR, (I = T, THAX, Axy) < el + A" T, (1 = T, THAX|.
= AR, =TT, THAX, (tAvy + (1 = DAV, — Axp) From (12), suppose that
- (T, T Axi = Ax)) = AT, (=TI THAx, Axe =TT T*Axy)

= T [l I~
AT T2, (T = T, THA]

+ AR, (I =T THAY, Axy)

= —A((J7, (T, T = DAx, (tAvy + (1 = DAV - Axy)
- (I, T Ax, — Ax)) = A5, (I = Tl THAx,, Ax — T T*Ax,)  then we have that
+ A, (I =TI, THAX, Ax).

By the assumption that A(Cy) is closed and convex and Lemma ”Jl]:: e L /lkA*ng - H/[;Cka)Axk” < 2!
2.5 and by the variational inequality for the Bregman projection

: .. - and that
of zero onto A(Cy) — Axy, as in Definition 2.6, we arrive at

(2, (I, T = DA, (tAvy + (1 = DAV — Axy) Ibedl”™" < I, xi = tA™ T, (1 = T TOAx VI xill < 2wl
2 k

(20)
—(IMy e T Axi = Axp)) 2 0
From Definition 2.2 (2), (12) and (20), we have that
and therefore,
, - A TE (I =TT THAx|
AT, —pHACkT p)Axk; tAvy + (1 = )Avy) PEL T2 X = tAATY (=T THAX|V 172 xill)
< /lk(JEz(I - HACkT )A.Xk, A.Xk> t”/lkA*JZZ(I _ l—[ZCka)Axk”
= 4P (I =T, THAX, Axy - T TFAx).  (17) =Pr el T
= ppr . 21
In addition, from Lemma 2.15, we have that pr;(71) @D
1 Substituting Egs. (20) and (21) into (19), and since ¢ < 74 and
_”ng X — AkA*(JZZ(I - HZQ THA x| pE: is nondecreasing function then, we have that
p v
< L2l = Ao, AT (1 = T THA ) L (7 2 A" I2 (1 =TT T)A
= q E "k kA Ey ACy k aa-q( Ez'xk’ k Ez( — Hac, YAxy)
l_ . N
+ EO'q(ngxk,/lkA Jp. (I =TI THAx) < 296G, [l f “ pE;( )dt
0 t
_ Lo P Pk Tk o (T
= VRl = Ao T, (= T, THA) < 206, P f PEIT( D g
0 3
1 .
+ C—IO'q(JZ]xk, AT (I~ Hﬁcka)Axk) = 29GP p; (i) (22)

40
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Substituting Eqgs. (22) into (18), we have that
1 .
5||ng X = MANT (= TIR . T Ax|
1
<l = AdAxi, To (I =TI THAX) + 29G|lxll o (i)

1
5||J§1 Xl = A7, (0 =TI T)Ax, Axe)

+ 29GyllxlP o (Te)- (23)

Substituting (23) and (17) into (16), we have that

1 1
Ap(Zp, tvy + (1 = D1p) < C—1||xk||p + ;HIVI + (1 =tmll?

— (I i tv1 + (1= D) + 29G |l pe: (1)
- (I, - HﬁckT")Axk), Ax = T T Axy)
= Ap(xg, tvi + (1 = ) + 29GyllalPp: (T1)

- (T (I = TI5 . THAX), Axe =TI THAX).  (24)

Substituting (13) and (12) into (24), we have that

Ap(z, tvr + (1 = Dva) < Ap(xg, tvy + (1 = Dy)
YT, (I =TIy TAX, Ax =TT T*Axe)
IIAIIIIJ§2(1 - Hf,CkT")Axk)II
(Jp, (=T TFYAxy, Axy — I, THAx;)
- IIA*IIIIJZZ(I - HZCka)Axk”
= Ap(xp, vy + (1 = Hva) = [1 =]
(Jp (I =T THAx, Axi — T TH)Axi)
IIAIIIIJZZ(I - HZCka)Axk)”

(25)

(26)

Therefore,
Ap(Zi, tvi + (1 = 1)) < Ap(xp, tvr + (1 = 1)), 27

Let x; = 0, we have

1
Ap(Xp, tvr + (1 = Dvy) = ;Iltw + (1= 0wl (28)

and from (28), we have

Lo
1+ (L= 072) = — AT (= T AR

+ A,,(xk, tvi + (1 —Hw)

+ ATy (I =TI THAX), tAvy + (1 - DAV).  (29)

Substituting (17) into (29), we have that

Lo
Ap(zi, vy + (1 = vy) < ;Ill/lkA Jo (=T THAx 1

+ 20 01+ (1= Do) + ,(J% (I = T THAx, Axy)

41

41
= (T (0 =TI THAxe, Axy =TT TAx). (30)
But, from (12), we have that
l||/1 A JE (I -1 . TMYAx||?
q kg, ACy k
11 R =T THAx, Ax =TT, THAX,)? an

qlAlp 17, (I = T, T AP

Substituting (31) into (30), we have that

Ap(zr, tvy + (1 =)

_11 (Jo (I =T, THAxe, Axi =TI TF)Axi)?

T qllAlp 15, (I =T, T Ax )P

+ (6 vy + (1= 0va) + Al (1 =TT TAx, Ax)

= (I (0 =TT THAx, Axi = T THAX,)
1.1 Vpd- chka)Axk,Axk -1, TFYAx)?
WAL 172, = T, TH AP
+ 806 vy + (1= Do) + A(A™ T (=TT TAX, xi)

1 U =T THAG, Ax, — T, T)Ax)?
AR 15, =TT, TAx P
X (Jp (I =T TOAx, Axg = T TAx)
11 (8 -T THAx, Axe =TI, TH)Axc)?
T 2, = T, TOAxP
+ 8 (a1 + (1= 0v) + AIE, (I = T, TOAx A%
1 (o (=TI TAx, Ax — T TAX)P
IAllP Iz, (I =TT . THAxIP

X (Jo (I =TI TAxe, Axe =TT o TAx;)
= Ap(xp, tvi + (1 = H)vy)

11 UpU-T, THAX, Axy — I, TEYA X
~ plIAIP 12,1 = T, THAx P

<1

<(

This implies that

Ap(zi tvy + (1 = D) < Ap(xp, tvy + (1 = D). 32)

In addition, it follows from Eq. (11), Definition 2.4 and Lemma
2.16 that

A[,(yk, v + (1 - t)V2)
= 8 (awd g @) + (1= @) Jg (U@, vi + (1= 1)va)

1
% (zx) + (1 = @) T, (U oIl
q
— (@}, (@) + (1 = @I}, (U@, tvi + (1= Do)
1
+ —lltvy + (1 = wall”
p

1
q

llaxd g, (z) + (1 = @I, (US@OI” = axdJ g, 2k tvi + (1 = Do)
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= /ln((JZZ(I - HZCHT")Axn,Av —Ax, + Ax, — HZCHT”Ax,,)
1 1 - /ln((JZZ(I - HZC T"Ax,, Ax, — HZC T"Ax,)
Z Py (1 — ko 1P — (o 2(1 — SN - !
< qCYk||Zk|| + q(l U zll” = (@ (1 — i) + (1 — ) ) +,1n<(]§2(1_ Hﬁch YAXp, Axy)

1
= (1 = a)(J} (U @), tvi + (1 = 1)va) + ;”tvl + (1 =pwll

x g(llzx — Urzll) - ak<J§] (@), v + (1 =) = {(Jp, (I = T TAx,, (Av — Ax,) — (I} . T"Ax, — Axy))
— A8 (1 =TT, T"YAxy, Ay — T, T"Axy)

+ A8 (1 =TT, T"YAxy, A

= ak(%””’l + (1= 0wallP = (J5 (@), v + (1 = Dva) + éllall”) = — A0 (I, T" = DAx,, (Av = Ax,) — (. T"Ax, — Ax,)
— A8 (1 =TT, T"YAxy, Ay — T, T"Axy)

+ A8 (1 =TT, T"YAx,, Axy).

1
= (1 = a)(Jy (U @), tvi + (1 = t)va) + ;Iltw + (1= 0mll?

1
+(1 - ak)(;lltw + (1= wall” = (7, (UK (@), tvi + (1 = Do)

| S q k
+ a”U Z"”p) — (@ (1 =) + (1 — ) agllze = Uzl By the assumption that A(C,,) is closed and convex and Lemma
2.5 and by the variational inequality for the Bregman projection

_ _ _ k
= @ bp @ v+ (= 0va) + (1 = @) & (UNz), 01 of zero onto A(C,) — Ax,, as in Definition 2.6, we arive at

+ (1= 1)v2) = (@ (1 = @) + (1 = @)’ as) x glllzx — U*zil)
S ag Ap (T tvi + (1= Ova) + (1 — aw) (ke Ap (2k, tv1

+ (1= 0v2) + 2p(z v + (1 = D) + ) — (@ (1 — ) and therefore,
+ (1 = ap)la)gllzx — Utz

Sk Ap @, tvi + (1= 0vp) + Ap(zr, tvy + (1 = Hva) + i

— (@1 =) + (1 — a)?a)gllzx — Utzll)

< Tk + 11 Ap (2, tvi + (1 = Ov2) + g (33)

(2 (I T" = DAx,, (Av — Ax,) = (ITh . T"Ax, — Ax,)) 2 0

/ln<J§2 (I - Hf;cn Tn)Axm AV)
< A (Jp (=TI TAX,, Axy)
= I, (I = T THAX,, Ax, — T T"Ax,).  (35)

From (27), (32) and (33), we have that In addition, from Lemma 2.15, we have that

v € C41. Hence, Cy, is convex.
Therefore C,, is closed and convex for each n € N

Step two: We prove I ¢ C,, forany n > 1. Clearly I' c C;. 1
Now assuming that T ¢ C, for some n > 1. Let v € T then from < —IIngxnIIq — A2, AT (1 - Hﬁcn TMAx,)
(11) and Lemma 2.15, having considered x, # 0, we get q )

1 ‘ n
VB 0 = AU (= T T A

1
+ =Gy (Jp, Xns WAL (I =TT . T"AX,)
q s

Ap(Zn, V)
1 1 1 n
= =V xu = A" (I =TT THA)I + =|v]l” = anf,';xnnq = Al Axy, J7 (1 =TT T")Ax,)
q " p
* 2 n 1
— (]len - /lnA (.]2‘2(1 - HZCUT )A)Cn), V> (34) + aozq(JZ‘lxn9 /lnA*ng(I _ HZC"TH)Axn)

1 1
= —||J2 x, = LA*JL (I =115 . THAx,||7 + =|vI|” 1
JVE R =Wy, TOAX7 + b = Ll s 20 AR

= (g, Xns V) + A (T (I = T T")A X, V). h
+ =0, (JL x,, A, A*TE (I = T1IE . TMAx,) (36)
Where g TE E, AC,

and
/l,,(A*(JfE’2 - Hzcn T"Ax,,v)

1
—7,(JP x,, L, A*TL (I =TI . TMAX,)
= 48 (I = T T Ax,, Av + IT,, T"Ax, — T T"Ax,) g BTN TR ACH "

P * P 4 n P
= A8, = Ty, T")Ax,, Av - T, T"Ax,) =G f OV 20 = LA, (0= T, TOAG Y IV 6D
; n =Gy
+ /ln<(J§,2(I — Hic Tn)A_xn,HiC TnA-xn> 0 ”/l A JP (I Hp ; )A ”
n n |4, * - " Xn
— /ln<(.]§2([ _ HZC’I T")Axn,AV _ HZCn T"Ax,,) ,OE* ( > - pEz pACn . 5 dt,
A =T T A, I T Ay — Axy + Axy) g, 20 = 24 A™ T, (= Ty, TOAZNV 1, xall)
n Ez AC,, ne ACU n n n (37)

= 4,{(Jp,(I ~ H/’;Cn T™MAx,, Av — Hﬁcn T"Ax,)
= A, (I =T . TMAx,, T T"Ax, — Ax,)
+ 4,((J7, (= T T"Ax,, Ax,)

foreveryt e [0,1].

42
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But

5, Xn =t A, A" T} (I = T . TAX, |
< Ixall”™ 4+ 1A,A" TG, (I =TT TA,.

From (12), suppose that

_ T [l 17!
ATV, (1 - T, T A |

n
then we have

I, 20 = tA, AT (1 =TI TAX || < 21l 17!

and that

= Ap(xna V) + zqu”xn“ppET(Tn)

— (I (I =T TAx,), Ax, = TTh THAX,).  (42)

Substituting (13) and (12) into (42), we have that

Bp(zZn, V)
7(-]52 - HZC,, THAx,,Ax, — HZCn Tn)Axn>
AN, (=TI . T)Ax,)|
(J8 (I =TI T")Ax,, Ax, — IT . T")Ax,)
AT, (I =TT . T")Ax,|
= Ap(-xn» V) - [1 - ')’]
<J§2 (I - H,IZC,, Tn)Axn’ Axn - Hﬁcn T”)Axn)

< Ap(xy,v) +
P

—1 * —1
all?™" < W2, 30— £, A2 (1 = Ty, TAx LV W, 3l < 2l

(38)

From Definition 2.2(2), we have that from Egs. (38) and (13)

HlA,A" 2 (1 =TT T")Ax |
PE;
V2 30— AT (1~ T, THASV T, 521D
HlAA" T8 (1 = T, T")Ax |
=Pe !

= pe: (1Ty). (39

Substituting Eqgs. (38) and (39) into (37), and since ¢ < 7, and
PE; is nondecreasing then, we have that

1
C—I(fq(ng X, /lnA*JZZ - wan TMAx,)
T pE; (1)
< zqu”xn”(p—l)qf Elet
0

T *(Tn)
< 29G ||, |IP f PERT™ it
0 T

n

< 27GyllxllP iy (). (40)

Substituting Eq. (40) into (36), we have that
1 D * n
EIIJIElx,, - LA ng(l - Hich YAx,||7
1
< ZIHXHHP - /ln<Axm ng(l - Hﬁcﬂ Tn)Axn> + Zqu”xn”ppEI(Tn)

1
= VRSl = AT}, = T, T A%, Axi)

+ 2qu”xn”ppET(Tn)~ (41)

Substituting Eqgs. (35) and (41) into (34), we have that

1 1
Ap(Zn,v) < =llxlIP + =[P
q p

= (I, %ns V) + 29GlIxallPpiy ()

— 4, (I = T . TAX,), Ax, =TT T")Ax,)

43

(43)
AIIZ, (I — T, T Ax,|
Therefore,
Bp(zn, V) < Bp(Xn, V). (44)
For x,, = 0 we have
Lo
Ap(Xn,v) = =Vl (45)
14
and from (45), we have
— l * gP _TTP n q
8@ ) = AT (1 =T THAXIY + 8550, 7)
+ /l,,(]ﬁ2 - Hch T"Ax,), Av). (46)
Substituting Eq. (35) into Eq. (46), we have that
1
Dp(zn,v) < =IA™TE (=TT T AX, |
q n
+ Ap(Xn, V) + /1,,(]1';2(1 - HZC”T")Axn,Axn)
- /ln(JZZ(I - HZC T"Ax,, Ax, — HZCXT”)Ax,,) 47)
But, from (13), we have that
! AT (I =TI . T")Ax,||
A T =T A
1 1 (ng(l - Hch T"Ax,, Ax, — H,ch T™MAx,)P “8)
Al V2.1 = T . T"Ax,|I?
Substituting (48) into (47), we have that
Ap(znsv) (49)

1 1 B -1, TMAx,, Ax, — I, . T"Ax,)?
S — Z n n
q lIAlIP IIJZZ(I - Uﬁcn T™)Ax,|IP
+ Ap(Xp, V) + /ln(ng(I - HZCn T"Ax,, Ax,)
- /1,,<J§2 - HZC" TMAx,, Ax, — Hﬁcn T"Ax,)
11 (LU =T, T"Ax,, Ax, - TI . T"Ax,)?

" V2 (I = T, THAx, P

<(1
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+ Ap(Xn, V) + /l,,<A*JZZ(I - HZC,, T"AX,, x,)

1 (Jo, (=TI T Ax,, Ax, — T . T"Ax, )
AR 12,1 = T . T")Ax, P
X (Jp, (I =T T")Axn, Ax, — T T"Ax,)

11 LU -T TMAX,, Ax, — T T"Ax,)?

" A A DYEaT
+ 2p (0, V) + AlIATTE (1 =TT T")AX, [l

1 (o (- T TAx,, Ax, — T, T"Ax,)P

<d

Al 2, (I = T, T)Ax, I
X (Jp, (I =T T")Ax,, Ax, =TT, . T"Ax;)
= Ap(xm V)

11 o =TI TAx,, Ax, — T T"Ax,)”

p lIAlP I3, (I =TI . T Ax,|IP

1.1
= 8p(Xns V) = —)
! p lAIIP

(I8 (I =T T")AX,, Axy = T T A, )P
15 (I = T, T")Ax, |1

(50)

This implies that
Ap(zna v) < Ap(xm V). (51)

In addition, it follows from (11), Definition 2.4, Lemma 2.16
and p € (1, o) that

Ap(Yns V)
= Ap(JZT(anJZ, (z2) + (1 = @) J (U"(z2)), V)

1
= ZI||anJ§lZn +( - an)ng Uyzl”q - <an-]£lzn

1
+ (1= ap)Jg U'zy,v) + l—)IIVII"

1
aua'njglzn + (1 - a'n)JZI Unzn”p - a’n<~]glzm V>

1
(1 = an)(Jp, (U" @), v) + pL

A

X g(”Zn - Unzn”) - an<ng (Zn)s V) - (1 - an)(-lgl(Un(Zn))s V>

1
+ =l
p
Lo » 1 » |-
= an(= VI = (Jg, @) v) + —llzall”) + (1 = an)(=[IVI]
p q p

1
— (T3, (U" @), v) + C—IIIU"ZnII”) = (a(1 — @)

+ (1 = @) a,)g(llz, — Uzl

=y By (20, V) + (1 = @) 2 (U(20), V)

— (a5 (1 — ) + (1 — @)’ @) X gllzn = U"zll)

S @y Ay (2n, V) + (1 = @)k Ap (2ns V) + Ap(2ns V) + )

— (an(1 —ay) + (1 — a)ay)g(lza — U'zill)
< kn Ap (2ps V) + Ap(20, V) +

— (i (1 = @p) + (1 = @)an)g(lz, — U"zl)) (52)
< [ky + 1] Ap (Zns V) + - (53)

From Egs. (44), (51) and (53), we have that v € C, and ' C
C, for any n > 1. Step three: we show that {x,} is Cauchy
sequence. For v € C,, and x,,4 = Hgﬂ(xl) € Cpyy C C,, then
from Definition 2.6, we have that 1

0< (LT (n)=J% (a)v—TI, (x))
= (J, T0g | (x1),v) = (T (x1),v)
ST () I () (I (e T, ().

This implies that

P T2 () T, (o) < U2 TIZ, (o), v)
— (T2 O )+ (D ) T (e

That is

-1 -1 -1
2, ol < T2, Gl vl + leallP~ vl + 1P~ T2, el

1 1
—allzall” + = (1 = @)U 21" = (i (1 = ) + (1 = @) a,)  and s0
q

(54)
Observe that if
T2 Gl < 2l P!
then we have IIHZH+1 (x)ll < 29711l (55)
and so we are done. Otherwise, let
-1
g eolly
t)ﬂ - Cn+l Z 2
(x|
For x; # 0 and using (54) we have that
T2 GeollAmZ, Gl = lbelP~")
< I, Gl + 1 [P
e Gl <l ””HIZ“M Dl + [P 56)
X1 h 1% .
Con T2, el =[xl
. . te,+1 . .
From (56), since the function h(t,,) = = is decreasing for

12
X1
ty, > 1 we arive at

p < . < . — . .
I, (el _Vigclnr}IIIVIIh(txl)_‘anlnr}IIIVIlh(Z) 3Vggﬁ]|lvl| (57)

If x; = 0 then from (54), we have that

I, el < i ol (58)

n+l

From (55), (57) and (58), we have that x,,,; = H’C’m(xl) is
44
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bounded.
For any n > 1, by Definition 2.6, we have that

0 < 8,(J2 T2 (xp). TIL, (1))

< 2p0 T2 (1) = 8y, TIZ, (1) (59)

From (59), we have that
Bp(x1, TIE, (x1)) < Ap(x1, TG, (x1)).

Thus {A,(x1, H’C’ (x1))} is nondecreasing. Therefore by bound-
edness of H’é"(xl), we have that lim 2, (xi, HZ,(XI)) exists. Let

m,n € N m < n. From x,, = H’én(xl) c C, and (59), we have
that

Ap 0 (0). 12, (6) < A, 0e T, () = Ay, TI2, (1)),
(60)

Since lim A, (x1, H'é (x1)) exists, it follows from (60) that
Ap(TIg, (x1), TG (x1)) — 0 as m,n — co.

Therefore {Hgn (x1)} is a Cauchy sequence.
Step four: we will show that lim A,(z,, Uz,) = Oand lim 4,
n—oo n—oo

(Axn,Hﬁch"Axn) =0.Let x,41 = Hlérm-l(xl) CcCyuy1 CCy.
From 11, we have that

1 1
Ap(Zn, V) £ Ap(X, V) © ;”Zn -7 < ;IIxn =P

Therefore {z,} is bounded as {x,} is bounded.
Hence, from Lemma 2.9 and 2.10, we have

Ap(Zns Xn) = By (Zns Xn1) + A p(Xps15 Xn)
=20 = Xni 1, S X0 = I X041)
< Ap(Xns Xpat) + Ap (X1, Xn)
=20 = Xpa 1, S X0 = I X41)
= (P Xni1 = I X0, Xpi1 = X, )

- <Zn - -xn+l’]pxn - Jpxn+l>

— 0asn — oo. (61)
Now, for x,, # 0 for all n € N, from (43), we have
Ap(@ns V) < Ap(n,v) = [1 = y1IlAX, — T T" AP~
This implies that
1
Ax, = T} T"Ax,|l < (A,,(xn,[\’l):j]p(zm V))IH
. [},(uznnﬂ — 1xll?) + T2 2 = T V>],,n
- [1-7v]
and therefore we have that
,}LI?O |Ax, — Hfacn T"Ax,|| = 0. (62)

45

45

For x, = 0 for all n € N, from (49), we have

Ap(ZVH V) S Ap(xn’ V)

1 <]§2(] - wan TMAx,, Ax, — foc,, T"Ax, )P
TP APIVLU - T, THAx)IP
This implies that
1
||A)Cn - HZC,lTnAxn” < ﬁ (A,,(x,,,v) - Ap(zmv))ﬁ
7 -
= ﬁ:”; (é(”Zn”p — lall?) + JE, 2 _ngxn,\,))” v

Therefore, we have that

lim ||Ax, — HZCH T"Ax,|| = 0. (63)
By Lemma 2.11, we have that
lim A, (Ax,, Hﬁcn T"Ax,) = 0. (64)

n—oo

On the other hand, since

Ap ns Xn) = Dp (Vs Xnt1) + Ap(Xat1s Xn) = Y = Xutls JPx = I X001)
<[+ k] 2p s Xn1) + TP Xt = TP Xy X1 — Xy )

=20 = Xt 1, I X0 = IV X11) + e

<[+ kad 2p (s Xns1) + (TP X1 = P X5 X1 = Xns)

=20 = Xns 1, S X0 = TP Xpi1) +

—0asn— oo

(65)
and

Ap()’m Zn) = Ap(ym Xn) + Ap(xn, Zn)
=V — X0, P20 — JPx,) > 0as n — oo.

(66)
Now, from (52), we have that

Apnsv) < Tk + 1] Ap (20, V) + iy
(@h (1 = a,) + (1 = @)’ an)g(llze — U'zal).
This implies, From (44), we have that
[kn + 1] Ap (ZIH V) +/~ln - Ap(yna V)
(ah(1 = a,) + (1 — ay)Pay)
},([kn + Izl = ynll?) + {IPyn = JP 20, V) = kI 20, V)
- (@h(1 = ay) + (1 — @)Pay) ‘
S|P +

+ .
(an(1 = @) + (1 = an)Pan)

8(llzn = Uzl <

Since @,(1 — a,) > 0, and g is continuous, strictly increasing
and convex function, then we have that

lim gllz, — U"(z,)ll = 0
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and

lim [z, = U"(z,)l = 0. (67)
By Lemma 2.11, we have that

}Lrg Ap (20, U"zy) = 0. (68)

Since T and U are continuous, then from (64) and (68), we have
that

: p _
r}Ln; Ap (Axy, I, TAx,) =0 (69)
and
lim A, (24, Uzy) = 0. (70)
n—o00

Step five: we will show that {x,} converges strongly to an el-
ement of I'. Since {x,} is Cauchy sequence, we may assume
that x, — x*, from (61) we have z, — x*, which implies
that z, — x*. So it follows from (70) and the demicloseness of
(I-"U) at zero that x* € Fix(U). In addition, since A is bounded
linear operator, we have that r}1—>no}o [|Ax, —Ax*|| = 0. Hence, it fol-

lows from (69), and demicloseness of (I — HZCT) at zero that
Ax* € F ix(HZCT). This means that x* € I" and {x,} converges
strongly to x* € I'. The proof is completed.

Intheorem 3.1, as U =T, E, = E, = Eand A = I, we have
the following result.

Corollary 3.1.1. Let E be a uniformly convex and uniformly
smooth Banach spaces, T : E — E be a uniformly contin-
uous Bregman generalized asymptotically nonexpansive opera-
tor with the sequences {k,} C [0, o0) and {u,} C [0, o) satisfying
limk, = 0 and ,}I_)rg un = 0, respectively, and, for p,q € (1, ),

n—oo

H’é : E — C be a Bregman projection onto a subset C € E,
and Fix(T) # ¢ and (I — T) be demiclosed at zero. Let x| € E
be chosen arbitrarily and let C) = E. Define a sequence {x,} as
follows;

an = (T8 = 5 (= TIL, T,

= T @} @) + (1= a5 (" @),

Chr1 ={(veC,:8,(n,V) < [k + 1] Ay (24, V) + s
Ap(zm v) < Ap()cm vk

Gt =TI, (v, 2 1

(71)

where

1
e X, £ 0
5, I=TIZ, Txll> =7 *

(g, =T0g, T, =TI, T"5,)"!
g, I=TIZ, T")x,llP

n

, X, =0

andy € (0,1)and 1, = I;

T are chosen such that
(0 (I =100 T")x,, 3, = 112, T"x,)

||Xn”p”]£2 (I - HZ” T”)x"”

Y
2G,

PE; (1) =

l

and {a,} c (0, 1) satisfies liminfa,(1 — a,) > 0. If Fix(T) =

46

46

{veE:v=Tvl # ¢ then {x,} converges strongly to x* €
Fix(T).

In theorem 3.1, when U and T are two Bregman symptotically
nonexpansive mappings, the following result holds.

Corollary 3.1.2. Let E| and E, be two uniformly convex and
uniformly smooth Banach spaces, A : E; — E, is bounded
and linear operator, such that A(C), for C C E, is closed
and convex, U : Ey — E; be a uniformly continuous Breg-
man asymptotically nonexpansive operator with the sequence
(kY ¢ [1,00) satisfying limyoe k) = 1, and T : E, —
E> be a uniformly continuous Bregman asymptotically nonex-
pansive operator with the sequence {k,(12)} C [1, 00) satisfying
lim,,— 0 kf,z) 1, respectively and, for p,q € (1,0), Hic :
E;, — AC be a Bregman projection onto a subset AC, and
Fix(U) # ¢ and Fix(HZCT) # ¢ respectively, and (I — U) and
- HZCT) be demiclosed at zero. Let x| € E| be chosen arbi-
trarily and let Cy = E|. Define a sequence {x,} as follows;

Zn = JZT (.]len - /lnA*JZZ(I - HXCW THAx,),
Yo = T2 @08, ) + (1= ) I, (UG,
Ciii={veC,: Ap(yna v) <k, Ap (Zn, V) £ ky Ap (xn, M,
Xn+l1 = H’C’M(xl),n >1
(72)
where

1 1
T T s X
AT 77, 0=, Toasl ¥ % 0

<J§2 (U-TTh g, TAX, Ax,—TT,, T"Ax,)!

7, I=TTc, THAxIP

Ay =
X, =0

lAll

W are chosen such that
n

andy € (0,1)and 1, =
(I8 (I =T TAX,, Ax, — T, T"Ax,)

el P11, (T = TLy e, TAX, |

Y
29G4|IAll

pl:} (o) = 5
and A* denote the adjoint of A, and {a,} c (0,1) satisfies
liminfa,(1 — a,) > 0, ky = GV VED), n> 1. T = {v e

n—oo
Fix(U): Av e Fix(Hf‘CT)} # ¢, then {x,} converges strongly to
x*erl.

In theorem 3.1, when U and T are two ¢-asymptotically nonex-
pansive mappings, the following result holds.

Corollary 3.1.3. Let E| and E, be two uniformly convex and
uniformly smooth Banach spaces, A : E; — E, is bounded
and linear operator, such that A(C), for C C Ei, is closed
and convex, U : E; — E| be a uniformly continuous ¢-
asymptotically nonexpansive operator with the sequence {kf,l)} C
[1, 00) satisfying lim,,_,q kf,l) 1, and T : E;, — E; be a
uniformly continuous ¢-asymptotically nonexpansive operator
with the sequence {kﬁ,z)} C [1, 00) satisfying lim,_,« kf) =1,
respectively and, for p,q € (1,0), HZC : E; — AC be a
generalized projection onto a subset AC, and Fix(U) # ¢ and
F ix(HZCT) # ¢ respectively, and (I — U) and (I — HZCT) be
demiclosed at zero. Let x| € E| be chosen arbitrarily and let
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C| = E\. Define a sequence {x,} as follows;

an = T (T, X = A" T, (I = T T"AX,),
Yn = JETI(Q'nJEI(Zn) +(1- a'n)JEl(Un(Zn)))a

Crrt ={vEC,: ¢n, V) < knp(2, V) < kynp(x, V),
X1 = e, (x1),n 2 1

(73)

where

1 1
e, X, # 0
AT e, (=TT, TAX, [ "

1 (JEZ(I—HAC”T”)Ax,,,Ax,,—l'[AC”T"Ax,,)

e, U=Hac, T")Axq]l

A

AP X =0

1

T lll

andy € (0,1)and 1, are chosen such that

(S, (I =y, T"AXy, Axy — Hac, T"AxX,)
1 Ve, (I = Tlac, T AX,|

Y
2G|1A]

s

pET (Tn) =

and A* denote the adjoint of A, and {a,} C (0,1) satisfies

liminfa,(1 —a,) > 0, ky = (P VEP), n> 1. T = {v €
Fix(U) : Av € Fix(TlscT)} # ¢, then {x,} converges strongly to
x* el

In theorem 3.1, when E; and E, are real Hilbert spaces H; and
H,, respectively, we have the following result.

Corollary 3.1.4. Let H, and H, be two real Hilbert spaces, A :
Hy — H; is bounded and linear operator, U : H — H, be a
uniformly continuous generalized asymptotically nonexpansive
operator with the sequences {k,(ql)} C [0, 00) and {/,tﬁ,l)} C [0, 00)
satisfying }Lrgok,gl) = 0 and }Lngoyf,l) = 0, respectively, and T :
H, — H, be a uniformly continuous generalized asymptoti-
cally nonexpansive operator with the sequences {k,(f)} C [0, c0)
and {yff)} C [0, o) satisfying r}Lngo kf,z) = 0 and r}1—>no]o ,uf,2) =0, re-
spectively, and (I — U) and (I — T) be demiclosed at zero. Let
X1 € Hy be chosen arbitrarily and let Cy = H, and the sequence

{x,} be defined as follows;

Zn = Xy — L, A" — TMAx,),

Yn = @pZp + (1 — @)U (z0),

Cur1 =€ Cy: lyn — vl < Tk + Ullzn — VIl + s
llzo = VIl < [kn + 1llx, = VIl + w2k,

Xne1 = Pc,, (x1),n 21

(74)

where A, € (0, m) and A* denote the adjoint of A, and {a,,} C
(0, 1) satisfies liminfa,(1—ay,) > 0, and k, = K" V&), n > 1.

IfT ={v e Fix(U) : Av € Fix(T)} # ¢, then {x,} converges
strongly to x* € T.

In theorem 3.1, when U and T are two nonexpansive map-
pings, the following result holds.

Corollary 3.1.5. Let E\ and E, be two uniformly convex and
uniformly smooth Banach spaces, A : E; — E, is bounded
and linear operator, such that A(C), for C C Ey, is closed and
convex, U : E; — E| be a uniformly continuous Bregman
nonexpansive operator, and T : E; — E, be a uniformly con-
tinuous Bregman nonexpansive operator, and, for p,q € (1, 00),

47

47

HZC : Ey — AC be a Bregman projection onto a subset AC,
and Fix(U) # ¢ and Fix(Hf;CT) # ¢ respectively, and (I — U)
and (I — HZCT) be demiclosed at zero. Let x; € E| be chosen
arbitrarily and let Cy = E| and the sequence {x,} be defined as
follows;

2y = Jg,[ (T3, Xn = AT (I = Hf\CnT)Axn),
Yn = JZT(anJ,?, (z0) + (1 = a)JE (U(z)),

Coii={veC,: Ap(ym v) < Ap(Zm v) < Ap(xm vk
X1 = 10g, (x1),n 21

(75)

where
1 1
Tl o sy *n # 0
E, ACh
Ay = | U8 U DAY, Ax,—TT e, TAx,)! 0
X, =
AP V7, 0T, DA% o
andy € (0,1)and 1, = W are chosen such that
n

(I8 (I = . T)Ax,, Ax, — T TAx,)
||xn||1’I|J§2(1 = I, T)Ax,||

Y
29G4||All

PE; (tn) =

)

and A* denote the adjoint of A, and {a,} c (0,1) satisfies
liminfa,(1 —a,) > 0. IfT ={ve Fix(U) : Av € Fix(HﬁCT)} *

@, then {x,} converges strongly to x* € T.

4. Application to the mixed equilibrium problem

Lemmad4.1. [4] Let E be a reflexive, strictly convex and smooth
Banach space, and let C be a nonempty closed convex subset of
E. Let f,g : C X C — R be two bifunctions which satisfy the
conditions (A1) — (A4), (B1) — (B3)and(C), in (6), then for every
x € E and r > 0, there exists a unique point z € C such that

1 .
f@y) +8@y) + -z jz - jx) 2 0¥y € €}
In Reich, S, Sabach, S (2010) [18], when f(x) = %I|x||p then
we have the following Lemma.

Lemma 4.2. Let E be a reflexive, strictly convex and smooth
Banach space, and let C be a nonempty closed convex subset of
E. Let f,g : C x C — R be two bifunctions which satisfy the
conditions (A1) — (A4), (B1) — (B3)and(C), in (6), then for every
x € E and r > 0, define a mapping S, : E — C as follows;

1
S(x)={xeC: f(z,y)+g(z,y)+;<y—z, Jhz—Jxy > 0Vy € C}
then the following hold;
1. S, is a single-valued;
2. S, is a Bregman firmly nonexpansive-type mapping, i.e.
Vx,y € E(S,x=8,y,J08 . x—JbS ,y) < (S,x=8 .y, Jox—Jby)

or equivalently
£p(S 1%, 81 ) + Ap(S,y, S, x) + Ap(S 2, x) + A,(S 1y, y) <
Ap(S X, y) + Ap(S Y, X)
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3. F(S,) = MEP(f,8);
4. MEP(f,g) is closed and convex;

5. forall x € Eandforallv € F(S,), A,(v,S X)+A,(S X, x) <
Ap(v, X).

Theorem 4.1. Let E| and E, be two uniformly convex and uni-
formly smooth Banach spaces, A : E1 — E, is bounded and
linear operator, such that A(C), for C C Ey, is closed and con-
vex, T : Ey — E, be a uniformly continuous Bregman nonex-
pansive operator, and, for p,q € (1, 00), Hic :Ey, — AC be a
Bregman projection onto a subset AC, and f,g : CXC — ‘R be
two bifunctions which satisfy the conditions (A1) — (A4), (By) —
(B3) and (C), in (6), for C x C C E; X E}, assume that C =
MEP(f,g) # ¢ and Fix(T) # ¢, taking C1 = E|, the sequence
{x,} is defined as follows;

choosing arbitrarily x; € Eq,

Zn = JgT(JZH Xp — /l,,A*JZZ(I - Hﬁcn TMAX,),

F (S (xn), b) + 8(S 1 (xn), D) + ,—In(b =81 (xa), g, (S H(x2))
—ng (xn))y=0VbeE;

v = T8 (nd? @) + (1= @5, (S (),

Crit =V E€C, 1 AW, V) £ 8p(2n, V) < Ap(n, v)}
Xn+l = HZ”H(XI),” >1,

(76)
where
1 1
s Xn £ 0
IAIN G, I-TT e, THAx> 7 #
1 Vg, U-T e T A% Ax, =TT T"Ax,)"™!
7, I-TT e, TAx,IIP

Ay =

AP X =0

1

T are chosen such that
:

andy € (0,1)and T, =

(J5 (I =TI T"Ax,, Ax, — T T"Ax,)
e PIVE (T — T, TAX|

Y
29G,|All

pE’l‘(Tn) = B
and A* denote the adjoint of A, and {a,} C (0, 1) satisfies
liminfa,(1-a,) > 0. IfT = {ve MEP(f,g) : Ave Fix(HﬁCT)} *

@, then {x,} converges strongly to x* € T.

Proof: It follows from the lemma 4.2 that Fix(S,) =
MEP(f, g) is nonempty, closed and convex and S, is a firmly
nonexpansive mapping. Meanwhile S, is assume to be contin-
uous. Hence all conditions in corollary 3.1.5 are satisfied. The
conclusion of theorem 4.1 can be directly obtained from corol-
lary 3.1.5.

Let £ and E; be two uniformly convex and uniformly smooth
Banach spaces. Let C and Q be nonempty closed convex sub-
sets of Ey and E;, respectively. A : E; — E, is bounded and
linear operator. Assume that f, g : C x C — ‘R be two bifunc-
tions and 7, g’ : Q X Q — ‘R be another two bifunctions. The
split mixed equilibrium problem (SMEP) is to find an element
v € C such that

S, y)+gv,y) 20¥yeC )

48
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and such that Av € Q solve

f(Av, Ay) + g(Av,Ay) > OVAy € Q (78)
Letw = {ve MEP(f,g) : Av € MEP(f’, g’)} denote the solu-
tion set of the SMEP.

Corollary 4.1.1. Let E| and E, be two uniformly convex and
uniformly smooth Banach spaces. Let C and Q be nonempty
closed convex subsets of E| and E,, respectively. A : E; —
E, is bounded and linear operator, such that A(C) is closed
and convex, and, such that A(C), for C C Ej, is closed and
convex, for p,q € (1,00), Hzc : E; — AC be a Bregman
projection onto a subset AC. Assume that f,g : C X C —
R be two bifunctions and f',g : Q X Q — R be another
two bifunctions which satisfy the conditions (A1) — (A4), (By) —
(B3) and (C), in (6), for CXC C E|XE,, assuming MEP(f, g) #
¢ and MEP(H/’;C,f',g’) # ¢, respectively, taking C = E, the
sequence {x,} is defined as follows;

choosing arbitrarily x| € Ey,

ST, b) + &S (), b) + (b = ST (x,), J7, (ST (x,)
—J7 (6)) 2 0Vb € E,

FST (Ax), b) + g(ST 7 (Ax), b) + Lo — ST (Ax,), J5 (ST (Ax,)
—J7(Ax,) =0V beE,

n = szlf (JZI (xn) - M*(JZZ(] - H§CS£1+g )AX,,)),
Yn = Th (@, @) + (1= )T, (ST (@),
Cr1i={veCy: Ap(ym v) < Ap(Zn’ v) < A,,(X,,, v}

Xuer = g, () n 2 1,

(79)
where

1 1

[ ||JZ_2(I—HZCS£*‘¥/ YA
n= 1 UZZ <1—HXCS§+‘€/ VAX,), A%, ~TT} .S
Al

X, #0

f'+g -1
m o Axp)’

— x,=0
I3, =T ) A P o

n

andy € (0,1)and 1, = W are chosen such that

(U, (I =115 STV AX,, Ax, — T ST Ax,)
7
lallPllg, (I = T S 7, ") A x|

Y
29G4|IAll

Pe(Ty) =

and A* denote the adjoint of A, and {r,} C (0,1), and {a,} C
(0, 1) satisfies lim,oo (1 —a,) > 0, n > 1. Ifw {v e
MEP(f,g) : Av € MEP(HZC,f’,g’)} # ¢, then {x,} converges
strongly to x* € w.

5. An Example

In this section we discuss how to apply Theorem 3.1 on the
following example.
LetE, =E; =C; =(-00,00),A=A"=1,p=qg=2,and

L Define

Ap = 5

X € (—=,0] =B
U E — B\ by Ulx) = )lcx (—00,0] 1
3% x € (0,00) = By,
A Ey — E; by A(x) = x,x € (—00, 00),



Yusuf Ibrahim / J. Nig. Soc. Phys. Sci. 1 (2019) 35-50 49

T : Ey —> Ey by T(x) = {xxe(_oo 01=D

1 xe(Ooo)—Dz,
0, 0
% : E; — C by IA(x * € (=0, 0)
x, x € [0, 00),
x, x € {0}
[T : E; — C by TIZT(x) = 30, x € (—c0,0)

%x, x € (0, 00).

Now we check whether or not the mappings U and T are uni-
formly continuous Bregman generalized asymptotically nonex-
pansive. To do this it suffices to check for each map the follow-
ing four cases.

Case I: if x,y € B; then

1 1
M (U™(x), U"(y) = 22(x,y) < (5 + 1142 (x, y) + ok (80)

Case II: if x,y € B, then
" " 1 1
82U (. U"D)) = 82 (55 579)

1 1
2r(x,y) < [5 + 1] 22 (x,y) + o
(81)

1
=3

Case III: if x € B, and y € By, then

11

1
8(U"(x), U"(53)) = da(556,0) = 73 5l = —<x N+ 5 |y|2

1 1 1
Skl = oy + 5 |y|2 = 20(5y) < [ + 182 (6, )) + 53
(82)

Case IV:if x € By and y € B;, then

2p(U"(0), U"(5) = 2a(x, 2,1y)

y®

1, 1 1
§|X| —§(X,y)+—22n

1
§|x|2 — (L) + =

IA

2}1
(83)

Since it is clear that U is uniformly continuous, then from (80),
(81), (82) and (83) U is a uniformly continuous Bregman gen-
eralized asymptotically nonexpansive mapping. Similarly, it is
also clear that 7 is a uniformly continuous Bregman general-
ized asymptotically nonexpansive mapping. Next, we simplify
the scheme as follows.

1 1
IyI = Mo(x,y) < [2— + 1] 22 (x,y) + =

Clearly Fix(U) = (00,01, Fix(T) = (—c0,0] and Fix(I2T) =

{0} such thatI" =
have that

{x € Fix(U); Ax € Fix(IIZT)} = {0}. Now we

Xp € (—00,0)
555 % € (0, 00)
1, x, € {0}.

1
Pl

A, =

49

Xpn + l,xn € (_0050)

Zn =X, — 1, x, € (0, 00)
0, x, € {0},
X, + 1,x, € (—00,0)
Yn =G = 55) (@ — 1), x, € (0,00)
0, x, € {0},
|xn+ 1-vP? < [2n + 1] lx, + 1 =y + 2n,
2Ix,, +1-v? < 2|Xn vlz,xn € (—00,0)
Cus1 =1V € Cus {3l — 55) (0 = D) = v <[5 + 13l — 1T = v +
o = 1=vP < 3xy = v x, € (0, 00)
310 = v <[5 + 11510 = vI* + 5, x, € {0},
Xpsl = H%M(xl),n > 1.

Now, take the initial point x; = 0.5 from positive real numbers,
the numerical experiment result is given below;

71 = -0.5;y; = -0.375; C; = (=0,0]; x, = 0;
2=0y=0;x3=x=0.

This implies that zero is in the solution set I'. Similarly,
from the negative real numbers, let x; = —0.5 then we arrive at
the same fixed point zero as follows;

71 =0.5;y; =0.5;,C, =[0,00); x, =0
2=0;y2=0;x3 =x=0.

6. Conclusion

In summary, the validity of the proposed scheme is provided
by step one and two in the manuscript. Strong convergence of
the proposed sequence is achieved in step three. Approximate
fixed point sequence of the proposed mappings is given by step
four. Application of the demicloseness principle for the pro-
posed mappings is discussed in step five. Furthermore, in this
paper, the strong convergence for SCFPP of Bregman general-
ized asymptotically nonexpansive mapping is obtained in uni-
formly convex and uniformly smooth Banach spaces, without
the assumption of semi-compactness property and or without
the assumption of Opial condition. This infer that, the main re-
sult presented here generalizes and extends that of Zhang et al.
[10] and the references therein. This is true by the fact that the
map presented here is more general than asymptotically nonex-
pansive map which was used by Zhang et. al. So also the space
used here generalizes the one applied in the work of Zhang etal.
Moreso, the notion of Bregman distance used here is the general
case of the classical norm distance used in the result of Zhang
etal.
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