Alpha decay half-lives of 171-189Hg isotopes using Modified Gamow-like model and temperature dependent proximity potential

https://doi.org/10.46481/jnsps.2020.139

Authors

  • W. A. Yahya Department of Physics and Materials Science, Kwara State University, Malete, Kwara State, Nigeria

Keywords:

Alpha deay, half-life, Proximity potential, Gamow-like model, Radioactive decay

Abstract

The alpha decay half-lives for $^{171-189}\mathrm{Hg}$ isotopes have been computed using the Gamow-like model (GLM), modified Gamow-like model (MGLM1), temperature-independent Coulomb and proximity potential model (CPPM), and temperature-dependent Coulomb and proximity potential model (CPPMT). New variable parameter sets were numerically calculated for the $^{171-189}\mathrm{Hg}$ using the modified Gamow-like model (termed MGLM2). The results of the computed standard deviation indicates that the modified Gamow-like model (MGLM2) and the temperature-dependent Coulomb and proximity potential model give the least deviation from available experimental values, and therefore suggests that the two models (MGLM2 and CPPMT) are the most suitable for the evaluation of $\alpha$-decay half-lives for the $\mathrm{Hg}$ isotopes.

Dimensions

A. Zdeb, M. Warda & K. Pomorski, “Half-lives for α and cluster radioactivity within a gamow-like model”, Phys. Rev. C 87 (2013) 024308.

E. Shin, Y. Lim, C. H. Hyun & Y. Oh, “Nuclear isospin asymmetry in α decay of heavy nuclei”, Phys. Rev. C 94 (2016) 024320.

H. Hassanabadi, E. Javadimanesh, S. Zarrinkamar & H. Rahimov, “An angle-dependent potential and alpha-decay half-lives of deformed nuclei for 67 ≤ Z ≤ 91”, Chin. Phys. C 37 (2013) 044101.

J. H. Cheng, J. L. Chen, J. G. Deng, X. J. Wu, X. H. Li & P.C. Chu, “Systematic study of α decay half-lives based on gamow-like model with a screened electrostatic barrier”, Nucl. Phys. A 987 (2019) 350.

N. A. M. Alsaif, S. Radiman & S. M. S. Ahmed, “Calculations of alpha cluster preformation probability for the three even-even superheavy isotopes with atomic number Z = 108, 110 and 112”, Int. J. Mod. Phys. E 26 (2017) 1750008.

K. P. Santhosh, D. T. Akrawy, H. Hassanabadi, A. H. Ahmed & T. A. Jose, “α-decay half-lives of lead isotopes within a modified generalized liquid drop model”, Phys. Rev. C 101 (2020) 064610.

Y. J. Wang, H. F. Zhang, W. Zuo & J. Q. Li,“Improvement of a Fission-Like Model for Nuclear α Decay”, Chin. Phys. Lett. 27 (2010) 062103.

G. Royer & R. Moustabchir,“Light nucleus emission within a generalized liquid-drop model and quasimolecular shapes”, Nucl. Phys. A 683 (2001) 182.

B. Xiaojun, H. Zhang, H. Zhang, G. Royer & J. Li, “[HTML] Systematical calculation of α decay half-lives with a generalized liquid drop model”, Nucl. Phys. A 921 (2014) 85.

G. Royer & H. F. Zhang, “Recent α decay half-lives and analytic expression predictions including superheavy nuclei”, Phys. Rev. C 77 (2008) 037602.

S. Z. J. P. Cui, Y. L. Zhang & Y. Z. Wang, “α-decay half-lives of super-heavy nuclei”, Phys. Rev. C 97 (2018) 014316.

K. P. Santhosh, C. Nithya, H. Hassanabadi & D. T. Akrawy, “α-decay half-lives of superheavy nuclei from a modified generalized liquid-drop model”, Phys. Rev. C 98 (2018) 024625.

K. P. Santhosh & T. A. Jose, “Alpha and cluster decay using Modified Generalized Liquid Drop Model with iso-spin dependent pre-formation factor”, Nucl. Phys. A 992 (2019) 121626.

K. P. Santhosh, S. Sahadevan & R. K. Biju, “Alpha radioactivity in heavy and super heavy elements”, Nucl. Phys. A 825 (2009) 159.

K. P. Santhosh, S. Sahadevan, B. Priyanka & M. S. Unnikrishnan, “Systematic study of heavy cluster emission from 210−226 Ra isotopes”, Nucl. Phys. A 882 (2012) 49.

V. Zanganah, D. T. Akrawy, H. Hassanabadi, S. Hosseini & S. Thakur, “Calculation of α-decay and cluster half-lives for 197−226 Fr using temperature-dependent proximity potential model”, Nucl. Phys. A 997 (2020) 121714.

R. K. Gupta & W. Greiner, “Cluster radioactivity”, Int. J. Mod. Phys. E 3 (1994) 335. DOI: https://doi.org/10.1142/S0218301394000127

B. B. Singh, S. K. Patra & R. K. Gupta, “Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities”, Phys. Rev. C 82 (2010) 014607.

G. Royer, “Alpha emission and spontaneous fission through quasi- molecular shapes”, J. Phys. G: Nucl. Part. Phys. 26 (2000) 1149. DOI: https://doi.org/10.1088/0954-3899/26/8/305

C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatang-trakuldee & D. Hu, “Microscopic mechanism of charged-particle radioac-tivity and generalization of the geiger-nuttall law”, Phys. Rev. C 80 (2009) 044326.

C. Qi, F. R. Xu, R. J. Liotta & R. Wyss, “Universal decay law in charged-particle emission and exotic cluster radioactivity”, Phys. Rev. Lett. 103 (2009) 072501.

Z. Ren, C. Xu & Z. Wang, “New perspective on complex cluster radioactivity of heavy nuclei”, Phys. Rev. C 70 (2004) 034304.

D. T. Akrawy, H. Hassanabadi, Y. Qian & K. P. Santhosh, “Influence of nuclear isospin and angular momentum on α-decay half-lives”, Nucl. Phys. A 983 (2019) 310.

R. Gharaei & V. Zanganeh, “Temperature-dependent potential in cluster-decay process”, Nucl. Phys. A 952 (2016) 28.

S. S. Hosseini, H. Hassanabadi, D. T. Akrawy & S. Zarrinkamar, “Alpha-decay half-lives of polonium isotopes in the mass range of 186-218”, Int. J. Mod. Phys. E 28 (2019) 1950043.

N. R. Stankov, “Application of mercury isotopes and their production”, J. Radioanalytical and Nucl. Chem. 205 (1996) 175. DOI: https://doi.org/10.1007/BF02039401

S. S. Hosseini, H. Hassanabadi, D. T. Akrawy & A. H. Ahmed, “Theoretical studies on alpha decay half-lives of astatine isotopes”, Int. J. Mod. Phys. E 29 (2020) 2050008.

K. Santhosh & I. Sukumaran, “Comparative study of the alpha decay of Hg isotopes using different forms of nuclear potentials”, C. R. Physique 19 (2018) 347.

K. Santhosh, I. Sukumaran & B. Priyanka, “Theoretical studies on the alpha decay of 178-220pb isotopes”, Nucl. Phys. A 935 (2015) 2842.

S. Malik & R. Gupta, “Theory of cluster radioactive decay and of cluster formation in nuclei”, Phys. Rev. C 39 (1989) 1992.

S. A. Gurvitz & G. Kalbermann, “Decay width and the shift of a quasistationary state”, Phys. Rev. Lett. 59 (1987) 262. DOI: https://doi.org/10.1103/PhysRevLett.59.262

M. V. Berry & K. E. Mount, “ Reports on Progress in Physics Semiclassical approximations in wave mechanics”, Rep. Prog. Phys. 35 (1972) 315.

F. Ghorbani, S. Alavi & V. Dehghani, “Temperature dependence of the alpha decay half-lives of even-even Th isotopes”, Nucl. Phys. A 1002 (2020) 121947.

G. Audi, F. G. Kondev, M. Wang, W. Huang & S. Naimi, “The NUBASE2016 evaluation of nuclear properties”, Chin. Phys. C 41 (2017) 030001.

M. Wang, G. Audi, F. G. Kondev, W. Huang, S. Naimi & X. Xu, “The AME2016 atomic mass evaluation (II). tables, graphs and references”, Chin. Phys. C 41 (2017) 030003.

W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi & X. Xu, “The AME2016 atomic mass evaluation (i). evaluation of input data; and adjustment procedures”, Chin. Phys. C 41 (2017) 030002.

V. Y. Denisov & H. Ikezoe, “α-nucleus potential for α-decay and sub-barrier fusion”, Phys. Rev. C 72 (2005) 064613.

K. N. Huang, M. Aoyagi, M. H. Chen, B. Crasemann & H. Mark, “Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations 2 ≤ Z ≤ 106”, At. Data Nucl. Data Tables 18 (1976) 243.

C. Qi, D. Delion, R. Liotta & R. Wyss, “Effects of formation properties in one-proton radioactivity”, Phys. Rev. C 85 (2012) 011303.

V. Denisov, O. Davidovskaya & I. Sedykh, “Improved parametrization of the unified model for α decay and α capture”, Phys. Rev. C 92 (2015) 014602.

Published

2020-11-15

How to Cite

W. A. Yahya. (2020). Alpha decay half-lives of 171-189Hg isotopes using Modified Gamow-like model and temperature dependent proximity potential. Journal of the Nigerian Society of Physical Sciences, 2(4), 250–256. https://doi.org/10.46481/jnsps.2020.139

Issue

Section

Original Research