Synthesis of SnO2/CuO/SnO2 Multi-layered Structure for Photoabsorption: Compositional and Some Interfacial Structural Studies


  • L. O. Animasahun Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile Ife, Nigeria; Department of Physics Electronics and Earth Sciences, Fountain University Osogbo, Nigeria
  • B. A. Taleatu Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile Ife, Nigeria
  • S. A. Adewinbi Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile Ife, Nigeria; Department of Physics, Osun State University, Osogbo, Nigeria
  • H. S. Bolarinwa Department of Physics Electronics and Earth Sciences, Fountain University Osogbo, Nigeria
  • A. Y. Fasasi Center for Energy Research and Development, Obafemi Awolowo University, Ile Ife, Nigeria


Many metal oxide heterostructures have been synthesized as mixed oxides or layered structures for photocatalytic, photodegradation of pollutants and light-harvesting applications. However, in the layered structures the effects of interfacial properties and composition have largely not been explored. Hence, the effects of interfacial mixing and diffusion of sandwiched thin CuO layer on optical absorption of as-deposited and heat-treated multi-layered structured SnO2/CuO/SnO2 films were studied. The RBS analysis of the as-deposited films showed the presence of a minute amount of Cu in the surface and bottom SnO2 layers of the structure. We attributed this to inhomogeneous layer thickness evidenced by very low Sn/Cu atoms ratio of the CuO layer. However, the thermal treatment of the layered structure led to pronounced interlayer mixing and consequent formation of SnO2-CuO solid solutions throughout the layered structure. The layer integrity of the inserted CuO of the as-deposited films was very high and the as-deposited structure was far more optically absorbing. However, the annealed structure showed lesser optical absorption because of the onset of interfacial mixing and improved crystallization. This reflected in the optical bandgap variations of the as-deposited and annealed multilayered structures. The significance of this result is that the multi-layered films possess band narrowing – evidence of increased photon absorption - making it a better candidate than pure SnO2 oxide for photocatalysis, photodegradation and photodetection applications. It also pointed to the fact that attention must be paid to effects of heat treatments or annealing when inserting an absorbing layer into a photocatalyst or a material meant for photodegradation or any light-harvesting material.


S.A. Adewinbi, B. A. Taleatu, R. A. Busari, O. E. Adewumi, E. Omotoso, K. O. Oyedotun & N. Manyala. "Preparation and Surface Characterization of Nanostructured MoO3/CoxOy and V2O5/CoxOy Interfacial Layers as Transparent Oxide Structures for Photoabsorption." Journal of Electronic Materials 49 (2020) 3837.

L. O. Animasahun, B. A. Taleatu, H. S. Bolarinwa, A. I. Egunjobi, A. Y. Fasasi, M.A Eleruja “Investigation of the Optical and Dielectric Behaviour of SnO2-CuO Mixed Oxides Thin Films”. Nigerian. Journal of. Pure & Applied. Science 33 (2020) 3788.

M. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M. M. Muller & W. Jaegermann, “Nanostructured SnO2–ZnO Heterojunction Photocatalysts Showing Enhanced Photocatalytic Activity for the Degradation of Organic Dyes”, Inorganic chemistry 51 (2012) 7764.

J. Ahmad & K. Majid, ”Enhanced Visible Light-driven Photocatalytic Activity of CdO–Graphene Oxide Heterostructures for the Degradation of Organic Pollutants”, New Journal of Chemistry 42 (2018) 3246.

S. K. Lakhera, A. Watts, H. Y. Hafeez, & B. Neppolian, “Interparticle Double Charge Transfer Mechanism of Heterojunction-Fe2O3/Cu2O Mixed Oxide Catalysts and its Visible-light Photocatalytic Activity”, Catalysis Today 300 (2018) 58.

A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, M. Sadiq, F. Z. Mahjoubi, & N. Barka, “Photocatalytic Degradation of Caffeine as a Model Pharmaceutical Pollutant on Mg-doped ZnO-Al2O3 Heterostructure”, Environmental Nanotechnology, Monitoring & Management 10 (2018) 63.

W. Zhao, W. Ma, C. Chen, J. Zhao, & Z. Shuai, “Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-x B x under Visible Irradiation”, Journal of the American Chemical Society 126 (2004) 4782.

C. Wang, L. Yin, L. Zhang, D. Xiang, & R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors”, Sensors, 10 (2010) 2088.

S. W. Choi, A. Katoch, J. Zhang & S.S. Kim, “Electrospun nanofibers of CuO SnO2 Nanocomposite as Semiconductor Gas Sensors for H2S Detection” Sensors and Actuators B: Chemical, 176 (2013).585-591.

A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, & P. K. Patanjali, Response Speed of SnO2-Based H2S Gas Sensors with CuO Nanoparticles. Applied Physics Letters, 84 (2004) 1180

M. T. Uddin, O. Babot, L. Thomas, C. Olivier, M. Redaelli, M.. D’Arienzo & T. Toupance, “New Insights into the Photocatalytic Properties of RuO2/TiO2 Mesoporous Heterostructures for Hydrogen Production and Organic Pollutant photodecomposition”, The Journal of Physical Chemistry C 119 (2015) 7006.

S. K. Dutta, S. K. Mehetor & N. Pradhan, “Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy”, The Journal of Physical Chemistry Letters 6 (2015) 936

S. Pal, S. Maiti, U. N. Maiti & K. K. Chattopadhyay, “Low-temperature Solution-Processed ZnO/CuO Heterojunction Photocatalyst for Visible Light-Induced Photo-Degradation of Organic Pollutants”, CrystEngComm, 17 (2015) 1464.

Y. Li & N. Chopra, “Structural Evolution of Cobalt Oxide–Tungsten Oxide Nanowire Heterostructures for Photocatalysis”, Journal of Catalysis 329 (2015) 514.

K. Mahmood, B. S. Swain, A. R. Kirmani & A. Amassian, “Highly Efficient Perovskite Solar Cells Based on a Nanostructured WO3–TiO2 Core-Shell Electron Transporting Material. Journal of Materials Chemistry A 3 (2015) 9051.

A. Kumar, G. Sharma, M. Naushad, A. Kumar, S. Kalia, C. Guo, C & G. T. Mola, “Facile Hetero-assembly of Superparamagnetic Fe3O4/BiVO4 Stacked on Biochar for Solar Photo-degradation of Methylparaben and Pesticide Removal from Soil. Journal of Photochemistry and Photobiology A: Chemistry 337 (2017) 118.

L. Sinatra, A. P. LaGrow, W. Peng, A. R. Kirmani, A. Amassian, H. Idriss & O. M. Bakr, “An Au/Cu2O–TiO2 System for Photocatalytic Hydrogen Production. A pn-Junction Effect or a Simple Case of in Situ Reduction”, Journal of Catalysis 322, (2015). 109.

Y. Yang, S. Wang, C. Jiang, Q. Lu, Z. Tang & X. Wang, “Controlled Synthesis of Hollow Co-Mo Mixed Oxide Nanostructures and their Electrocatalytic and Lithium Storage Properties. Chemistry of Materials 28 (2016) 2417.

G. Laricchiuta, W. Vandervorst, I. Vickridge, M. Mayer & J. Meersschaut, “Rutherford Backscattering Spectrometry Analysis of InGaAs Nanostructures”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 37 (2019) 020601.

V. Sammelselg, J. Aarik, A. Aidla, A. Kasikov, E. Heikinheimo, M. Peussa,.& L. Niinist, “Composition and Thickness Determination of Thin Oxide Films: Comparison of Different Programs and Methods”, Journal of Analytical Atomic Spectrometry 14 (1999) 523.

M. Lin, Y. Chen & J. Ma, “Gas Sensing of SnO2 Nanocrystals Revisited: Developing Ultra-sensitive Sensors for Detecting the H2S Leakage of Biogas”, Scientific Reports 4 (2014) 6028.

T. A. Miller, S. D. Bakrania, C. Perez & M. S. Wooldridge, “Nanostructured Tin Dioxide Materials for Gas Sensor Applications”, Functional Nanomaterials (2006) 453.

D. Solís-Casados, E. Vigueras-Santiago, S. Hernández-López & M. A. Camacho-López, “Characterization and photocatalytic performance of tin oxide”, Industrial & Engineering Chemistry Research 48 (2009) 1249.

S. A. Mahmoud & O. A. Fouad, “Synthesis and Application of Zinc/Tin Oxide Nanostructures in Photocatalysis and Dye-Sensitized Solar Cells”, Solar Energy Materials and Solar Cells 136 (2015) 38.

A. H. Navidpour, M. Fakhrzad, M. Tahari & S. Abbasi, “Novel Photocatalytic Coatings based on Tin Oxide Semiconductor”, Surface Engineering 35 (2019) 216.

E. Keles, M. Yildirim, T. Öztürk & O. A. Yildirim, “Hydrothermally Synthesized UV Light Active Zinc Stannate: Tin Oxide (ZTO: SnO2) Nanocomposite Photocatalysts for Photocatalytic Applications”, Materials Science in Semiconductor Processing, 110, 104959.

N. P. Barradas, “Rutherford Backscattering Analysis of Thin Films and Superlattices with Roughness”, Journal of Physics D: Applied Physics 34 (2001) 2109.

M. Batzill, & U. Diebold, “The Surface and Materials Science of Tin Oxide”, Progress in Surface Science 79 (2005) 147.

D. R. Miller, S. A. Akbar & P. A. Morris, “Nanoscale Metal Oxide-based Heterojunctions for Gas Sensing: A Review”, Sensors and Actuators B: Chemical 204 (2014) 250.

M. Laurenti, & V. Cauda, “Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications”, Coatings 8 (2018) 67.

G. Patil, D. Kajale, D. Chavan, N. Pawar, P. Ahire, S. Shine, et al., “Synthesis, Characterisation and Gas Sensing Performance of SnO2 Thin Films Prepared by Spray Pyrolysis”, Bulletin of Materials Science 34 (2011) 1.

W. Chen, Q. Zhou, F. Wan & T. Gao, “Gas Sensing Properties and Mechanism of Nano-SnO2 Based Sensor for Hydrogen and Carbon Monoxide”, Journal of Nanomaterials (2012) 2012

M. Batal, G. Nashed & F. Jneed, “Electrical Properties of Nanostructure Tin Oxide Thin Film Doped with Copper Prepared by Sol-Gel Method”, Latin America Journal of Physics Education 6 (2012) 311.

M. Ledinsky, T. Schonfeldova, J. Holovsky, E. Aydin, Z. Hajkova, L. Landová, & S. De Brune, “Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites”. The Journal of Physical Chemistry Letters 10 (2019) 1368.

L. O. Animasahun, B. A. Taleatu, H. S. Bolarinwa, A. Y. Fasasi, M. A. Eleruja & E. I. Obinajunwa, ‘‘Spray Pyrolysis deposition and characterizations of dielectric SnO2 thin films”. Fountain Journal of Natural and Applied Sciences 8 (2019) 11.



How to Cite

L. O. Animasahun, B. A. Taleatu, S. A. Adewinbi, H. S. Bolarinwa, & A. Y. Fasasi. (2021). Synthesis of SnO2/CuO/SnO2 Multi-layered Structure for Photoabsorption: Compositional and Some Interfacial Structural Studies. Journal of the Nigerian Society of Physical Sciences, 3(2), 74–81.



Original Research