Bayesian Multilevel Models for Count Data
Keywords:
Count Data, Health, Insurance, Dispersion, Multilevel Models.Abstract
The traditional Poisson regression model for fitting count data is considered inadequate to fit over-or under-dispersed count data and new models have been developed to make up for such inadequacies inherent in the model. In this study, Bayesian Multi-level model was proposed using the No-U-Turn Sampler (NUTS) sampler to sample from the posterior distribution. A simulation was carried out for both over-and under-dispersed data from discrete Weibull distribution. Pareto k diagnostics was implemented, and the result showed that under-dispersed and over-dispersed simulated data has all its k value to be less than 0.5, which indicate that all the observations are good. Also all WAIC were the same as LOO-IC except for Poisson in the over-dispersed simulated data. Real-life data set from National Health Insurance Scheme (NHIS) was used for further analysis. Seven multi-level models were f itted and the Geometric model outperformed other model.

Published
How to Cite
Issue
Section
Copyright (c) 2021 Journal of the Nigerian Society of Physical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of the Nigerian Society of Physical Sciences (JNSPS) is published under the Creative Commons Attribution 4.0 (CC BY-NC) license. This license was developed to facilitate open access, namely, it allows articles to be freely downloaded and to be re-used and re-distributed without restriction, as long as the original work is correctly cited. More specifically, anyone may copy, distribute or reuse these articles, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article, mine the article even for commercial purposes, as long as they credit the author(s).