Synthetic characterization and Structural Properties of Nanocellulose from Moringa oleifera seeds


  • A. F. Afolabi Condensed Matter and Statistical Physics Research Unit, Department of Physics, The Federal University of Technology, P.M.B. 704, Akure, Nigeria.
  • S. S. Oluyamo Condensed Matter and Statistical Physics Research Unit, Department of Physics, The Federal University of Technology, P.M.B. 704, Akure, Nigeria.
  • I. A. Fuwape Condensed Matter and Statistical Physics Research Unit, Department of Physics, The Federal University of Technology, P.M.B. 704, Akure, Nigeria.


crystallinity index, crystal structure, hydroxyl group, moringa oleifera, nanocellulose


In this research, nanocellulose is isolated from Moringa oleifera seed using acid hydrolysis and the structural properties were determined. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used for the characterization of the isolated nanocellulose. The most noticeable peak is observed at  and the value of the crystallinity index () from the XRD pattern is 63.1%. The calculated values of  hydrogen bond intensity (HBI), lateral order index (LOI) and total crystalline index (TCI) are 0.93, 1.17and 0.94 respectively exhibited high degree of crystallinity and well arranged cellulose crystal structure. The isolated nanocellulose has an average length and diameter of 14.3 and 36.33 respectively. Furthermore, the FTIR peaks revealed the presence of C-H bending, C-O stretching and O-H stretching functional groups.


S. M. Mangale, S. G. Chonde, A. S. Jadhav, P. D. Raut “Study of Moringa oleifera (Drumstick) seed as natural Absorbent and Antimicrobial agent for River water treatment”, Journal of Natural Product and Plant Resource, 2 (2012) 89.

G.V. Shivani, G. “Meenaksh Health benefits of moringa oleifera: a miracle tree”, International Journal of Food and Nutritional Sciences, 3 (2014) 111.

V. A. Barbash, O. V. Yashchenko, O. A. Vasylieva “Preparation and Properties of Nanocellulose from Miscanthus x giganteus”, Journal of Nanomaterials, 4 (2019) 1. DOI:

I. A. Sacui, R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi, C. Weder, Foster, E. J. Foster, R. T. Olsson, J. W. Gilman “Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods”, ACS applied materials & interfaces, 6 (2014) 6127. DOI:

W. Chen, H. Yu, S. Lee, T. Wei, J. Lia, Z. Fan “Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage”, Chemical Society Reviews, 47 (2018) 2837. DOI:

D. Trache, A. F. Tarchoun, M. Derradji, T. S. Hamidon, N. Masruchin, N. Brosse, M. H. Hussin “Nanocellulose: from fundamentals to advanced applications”, Frontiers in chemistry 8 2020) 392. DOI:

Y. Habibi, L. A. Lucia, O. J. Rojas “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications”, Chemical Reviews, 110 (2010) 3479. DOI:

J. Cruz, R. Fangueiro “Surface modification of natural fibers: a review”, Procedia Engineering”, 155 (2016) 285. DOI:

V. A. Barbash, O. V. Yaschenko, O. M. Shniruk “Preparation and properties of nanocellulose from organosolv straw pulp”, Nanoscale Research Letters, 12 (2017) 241. DOI:

F. Meng, G. Wang, X. Du, Z. Wang, S. Xu, Y. Zhang, “Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue”, Composites Part B: Engineering, 160 (2019) 341. DOI:

M. Mariano, R. Cercena, V. Soldi, ”Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis”, Industrial Crops and Products, 94 (2016) 454. DOI:

D. Chen, D. Lawton, M. Thompson, Q. Liu, “Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste”, Carbohydrate Polymers, 90 (2012) 709. DOI:

V. N An,, H. T. C. Nhan, T. D. Tap, T. T. Van, P. V. Viet, L. V. Hieu “Extraction of high crystalline nanocellulose from biorenewable sources of vietnamese agricultural wastes”, Journal of Polymers and the Environment, 28 (2020) 1465. DOI:

B.S. Purkait, D. Ray, S. Sengupta, T. Kar, A. Mohanty, M. Misra “Isolation of cellulose nanoparticles from sesame hus”, Industrial and Engineering Chemistry Research, 50 (2010) 871. DOI:

S. M. Rosa, N. Rehman, M. I. G. de Miranda, S. M. Nachtigall, C. I. Bica “Chlorine-free extraction of cellulose from rice husk and whisker isolation”, Carbohydrate Polymers, 87 (2012) 1131. DOI:

M. M. Haafiz, A. Hassan, Z. Zakaria, I. Inuwa “Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose”, Carbohydrate Polymers, 103 (2014)119. DOI:

S. Bano, Y. S. Negi, “Studies on cellulose nanocrystals isolated from groundnut shells”, Carbohydrate polymers, 157 (2017) 1041. DOI:

N.A. Rosli, I. Ahmad, I. Abdullah “Isolation and characterization of cellulose nanocrystals from Agave Augustifolia fibre”, BioResources, 2 (2013) 1893. DOI:

M. Le Normand, R. Moriana, M. Ek “Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective” Carbohydrate Polymers, 111 (2014) 979. DOI:

B. W. Chieng, H. S. Lee, A. N. Ibrahim, Y. Y. Then, Y. Y. Loo “Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber”, Polymers, 9 (2017) 355. DOI:

J. Gong, J. Li, J. Xu “Research on cellulose nanocrystals produced from cellulose sources with various polymorphs”. Royal Society Chemistry Advances, 7 (2017) 33486. DOI:

R. Andalia, R. Julinawati, H. Helwati “Isolation and characterization of cellulose from rice husk waste and sawdust with chemical method”, Jurnal natural, 20 (2020) 6. DOI:

H. M. Ng, L. T. Sin, T. T. Tee, S. T. Bee, D. Hui, C. Y. Low, A. R. Rahmat “Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers” Composites Part B: Engineering, 75 (2015) 176. DOI:

C. Trilokesh, K. B. Uppuluri “Isolation and characterization of cellulose nanocrystals from jackfruit peel” Scientific Reports, 9 (2019)16709. DOI:

E. Galiwango, N. S. Abdel Rahman, A.H. Al-Marzouqi, M. M. Abu-Omar, A. A. Khaleel, “Isolation and characterization of cellulose and ?-cellulose from date palm biomass waste”, Heliyon, 5 (2019) e02937. DOI:

S. Benyoucef, D. Harrache, S. Djaroud, K. Sail, D. Gallart-Mateu, M. Guardia “Preparation and characterization of novel microstructure cellulosic sawdust material: application as potential adsorbent for wastewater treatment”, Cellulose, 27(2020) 1. DOI:

R.M. Sheltami, I. Abdullaha, I. Ahmada, A. Dufresnec, H. Kargarzadeh “Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus Tectorious)”, Carbohydrate Polymers, 88 (2012) 772. DOI:

J. K. Singh, R. K. Sharma, P. Sharma, A. Kumar, M. L. Khan “Imidazolium based ionic liquids: A promising green solvent for water hyacinth biomass deconstruction”. Frontiers in Chemistry, 6 (2018) 548. DOI:

M. Poletto, H.L.O. Júnior, A.J. Zattera “Native cellulose: structure, characterization and thermal properties”, Materials, 7 (2014) 6105. DOI:

D. Bondeson, A. Mathew, K. Oksman “Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis”, Cellulose, 13 (2006) 171. DOI:

M.A. Adekoya, S.S. Oluyamo, O.O. Oluwasina, A.I. Popoola “Structural characterization and solid state properties of thermal insulating cellulose materials of different size classifications”, Bioresources, 13 (2018) 906. DOI:

U.J. Kim, S.H. Eom, M. Wada “Thermal decomposition of native cellulose:

influence on crystallite size”, Polymer Degradation Stability, 95 (2010) 778. DOI:

A. Mandal, D. Chakrabarty “Isolation of nanocellulose from waste sugarcane baggase and its characterization”, Carbohydrate Polymers, 86 (2011) 1291. DOI:

M.S. Nazir, B.A. Wahjoedi, A.W. Yussof, M.A. Abdullah “Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches”, BioResources, 2 (2013) 2161. DOI:



How to Cite

Afolabi, A. F., Oluyamo, S. S., & Fuwape, I. A. (2021). Synthetic characterization and Structural Properties of Nanocellulose from Moringa oleifera seeds. Journal of the Nigerian Society of Physical Sciences, 3(3), 148–153.



Original Research