Enhancing cellulose fiber properties from chromolaena odorata and anana comosus through novel pulping chemical mixtures

Authors

  • Olayinka Oluwaseun Oluwasina Department of Marine Science and Technology, Federal University of Technology, P.M.B 704, Akure, Nigeria
  • Mochamad Zakki Fahmi Department of Chemistry, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia
  • Olugbenga Oludayo Oluwasina Department of Chemistry, Federal University of Technology, P.M.B 704, Akure, Nigeria https://orcid.org/0000-0001-9441-3911

Keywords:

Cellulose, Characterization, Lignocellulose, Pineapple leaf, Siam weed

Abstract

The production of cellulose with exceptional properties has led to the modification of chemical pulping methods and the development of newer chemical pulping methods. This study developed mixtures of sodium hydroxide, ethanol, and anthraquinone as new pulping chemicals to produce alpha-cellulose from pineapple leaves and Saim weed stems. The addition of anthraquinone was noticed to influence the pulp yield positively and the FTIR of all the cellulose has the characteristic cellulose bands. Calculated Total crystallinity index (TCI), (Lateral order index) LOI., and Hydrogen bond intensity (HBI) from the FTIR presented PLSHAEC (68.38 %) and SWSHQEC (67.74 %) having high crystallinity. From the XRD, the 2? by all the materials is attributed to cellulose I diffraction, and the crystallinity index aligned with FTIR determined crystallinity. The determined particle average diameter using ImageJ software showed that PLSHQEC 3.00 had the smallest value, followed by 5.17 for PLSHQC, 5.32 for SWSHQEC, and 6.03 for SWSHQEC. From the thermal analysis, the onset of the degradation of all the cellulose occurred at different temperatures: 247.10? (PLSHQC), 253.38? (PLSHQEC), 240.20? (SWSHQC) and 242.58? (SWSHQEC). The increase in yield, higher crystallinity index, and smaller fiber diameter of the cellulose demonstrated anthraquinone as a better additive to produce quality cellulose that would undergo easy chemical modification.

Dimensions

M. Ichwan, A. J. Onyianta, R. S. Trask, A. Etale & S. J. Eichhorn, “Production and characterization of cellulose nanocrystals of different allomorphs from oil palm empty fruit bunches for enhancing composite interlaminar fracture toughness”, Carbohydrate Polymer Technologies and Applications 5 (2023) 100272. https://doi.org/10.1016/j.carpta.2022.100272.

S. H. Omer, T. O. Khider, O. T. Elzaki, S. D Mohieldin & S. K. Shomeina, “Application of soda-AQ pulping to agricultural waste (okra stalks) from Sudan, B.M.C. Chemical Engineering 1 (2019) 1. https://doi.org/10.1186/s42480-019-0005-9.

A. Gonzalo, F. Bimbela, J. L. Sánchez, J. Labidi, F. Marı́n & J. Arauzo, “Evaluation of different agricultural residues as raw materials for pulp and paper production using a semichemical process?, Journal of Cleaner Production 156 (2017) 184. https://doi.org/10.1016/j.jclepro.2017.04.036.

S. Saini, A. A. Kadam, V. Kumar, K. K. Gaikwad, S. P. Singh & D. Dutt, “Conversion of rice straw into disposable food-serving bowl via refiner mechanical pulping: An environmentally benign approach to mitigate stubble burning and plastic pollution?, Biomass Conversion and Biorefinery 13 (2023) 6797. https://doi.org/10.1007/s13399-021-01728-y.

L. A. Worku, A. Bachheti, R. K Bachheti, C. E. Rodrigues Reis & A. K. Chandel, “Agricultural residues as raw materials for pulp and paper production: Overview and applications on membrane fabrication?, Membranes 13 (2023) 228. https://doi.org/10.3390/membranes13020228.

Q. Han, X. Gao, H. Zhang, K. Chen, L. Peng & Q. Jia, “Preparation and comparative assessment of regenerated cellulose films from corn (Zea mays) stalk pulp fines in DMAc/LiCl solution?, Carbohydrate polymers 218 (2019) 315. https://doi.org/10.1016/j.carbpol.2019.04.083.

A. H. Basta & V. F. Lotfy, “Impact of pulping routes of rice straw on cellulose nanoarchitectonics and their behavior toward indigo dye?, Applied Nanoscience 13 (2023) 4455. https://doi.org/10.1007/s13204-022-02714-0.

C. M. Imlauer Vedoya, M. C. Area, N. Raffaeli & F. E. Felissia, “Study on soda?ethanol delignification of Pine Sawdust for a Biorefinery?, Sustainability 14 (2022) 6660. https://doi.org/10.3390/su14116660.

O. O. Oluwasina, L. Lajide & B.J. Owolabi, “Microcrystalline cellulose from plant wastes through sodium hydroxide-anthraquinone-ethanol pulping?, BioResources 9 (2014) 6166. https://doi.org/10.15376/biores.9.4.6166-6192.

T211om-93, Standard for ash in wood, pulp, paper and paperboard, Technical association of the pulp and paper industry (TAPPI), 1999. https://www.tappi.org/content/sarg/t211.pdf.

T222om-98, Standard for acid-insoluble lignin in wood and pulp, Technical association of the pulp and paper industry (TAPPI), 1999. https://www.tappi.org/content/sarg/t222.pdf.

ASTM D1104-56, A standard method of test for holocellulose in wood, ASTM international, 1978. https://www.document-center.com/standards/show/ASTM-D1104.

ASTM D1103-60, A standards method for alpha-cellulose in wood, ASTM international, 1978. https://www.document-center.com/standards/show/ASTM-D1103.

B. Goodell, J. E. Winandy & J. J. Morrell, “Fungal degradation of wood: emerging data, new insights and changing perceptions?, Coatings 10 (2020) 1210. https://doi.org/10.3390/coatings10121210.

FAO Code of practice for the prevention and reduction of mycotoxin contamination in cereals. CAC/RCP51-2003: Codex Alimentarius, Food and Agriculture Organization of the United Nations, 2014. www.fao.org/fao-who-codexalimentarius/standards/en/.

A. Sahoo, S. Kumar & K. Mohanty, “A comprehensive characterization of non-edible lignocellulosic biomass to elucidate their biofuel production potential?, Biomass Conversion and Biorefinery 12 (2020) 5087. https://doi.org/10.1007/s13399-020-00924-6.

B. Castells, I. Amez, L. Medic, N. Fernandez-Anez & J. Garcia-Torrent, “Study of lignocellulosic biomass ignition properties estimation from thermogravimetric analysis?, Journal of Loss Prevention in the Process Industries 71 (2021) 104425. https://doi.org/10.1016/j.jlp.2021.104425.

M. A. H. Alharbi, S. Hirai, H. A. Tuan, S. Akioka & W. Shoji, “Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot- pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves, Polymer Testing 84 (2020) 106384. https://doi.org/10.1016/j.polymertesting.2020.106384.

S. Cichosz & A. Masek, “I.R. study on cellulose with the varied moisture contents: Insight into the supramolecular structure?, Materials 13 (2020) 4573. https://doi.org/10.3390/ma13204573.

M. S. Rafidah, A. Jahimin & S. M. Sani, “Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark?, Wood Science and Technology 55 (2021) 295. https://doi.org/10.1007/s00226-020-01258-2.

M. L. Nelson & R. T. O’Connor, “Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II?, Journal of Applied Polymer Science 8 (1964) 1325. https://doi.org/10.1002/app.1964.070080323.

A. A. M. Nada, S. Kamel & M. El-Sakhawy, “Thermal behaviour and infrared spectroscopy of cellulose carbamates?, Polymer Degradation and Stability 70 (2000) 347. https://doi.org/10.1016/S0141-3910(00)00119-1.

P. Kaur, N. K. Bhardwaj & J. Sharma, “A study elucidating the relation between cellulose dissolution and crystallinity after cellulase treatment at different doses?, Biotech 11 (2021) 371. https://doi.org/10.1007/s13205-021-02920-7.

I Jankowska, P. ?awniczak, K. Pogorzelec-Glaser, A ?api?ski, R. Pankiewicz & J. Tritt- Goc,?Cellulose microfibers surface treated with imidazole as new proton conductors?, Materials Chemistry and Physics 239 (2020) 122056. https://doi.org/10.1016/j.matchemphys.2019.122056.

A. F. Tarchoun, D. Trache, T. M. Klapötke, B. Krumm, K. Khimeche & A. Mezroua, “A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: synthesis and characterization?, Carbohydrate Polymers 249 (2020) 116820. https://doi.org/10.1016/j.carbpol.2020.116820.

L. K. Kian, N. Saba, M. Jawaid & H Fouad, “Characterization of microcrystalline cellulose extracted from olive fiber?, International journal of biological macromolecules 156 (2020) 347. https://doi.org/10.1016/j.ijbiomac.2020.04.015.

D. Trache, A. F. Tarchoun, S. Chelouche & K. Khimeche, “ New insights on the compatibility of nitrocellulose with aniline?based compounds?, Propellants, Explosives, Pyrotechnics 44 (2019) 970. https://doi.org/10.1002/prep.201800269.

E. Erisir, E. Gumuskaya, H. Kirci & N. Misir, “Alkaline sulphite anthraquinone pulping of caucasian spruce (Picea orientalis L.) chips with added sodium borohydride and ethanol?, Drewno Prace Naukowe Doniesienia Komunikaty 58 (2015) 194. https://doi.org/10.12841/wood.1644-3985.067.07.

A. F. Tarchoun, D. Trache & T. M. Klapötke, “Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization?, International journal of biological macromolecules 138 (2019) 837. https://doi.org/10.1016/j.ijbiomac.2019.07.176.

A. Y. Meliko?lu, S. E. Bilek & S. Cesur, “Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace?, Carbohydratepolymers 215 (2019) 330. https://doi.org/10.1016/j.carbpol.2019.03.103.

L. Cheng, X. Hu, Z. Gu, Y. Hong, Z. Li, C. Li, “Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulase?, International journal of biological macromolecules 131 (2019) 564. https://doi.org/10.1016/j.jlp.2021.104425.

B. Tsegaye, C. Balomajumder & P. Roy, “Alkali pretreatment of wheat straw followed by microbial hydrolysis for bioethanol production?, Environmental technology 40 (2019) 1203. https://doi.org/10.1080/09593330.2017.1418911.

M. A. Jmel, N. Anders, G. B. Messaoud, M. N. Marzouki, A. Spiess & I. Smaali, “The stranded macroalga Ulva lactuca as a new alternative source of cellulose?: Extraction, physicochemical and rheological characterization. Journal of Cleaner Production 234 (2019) 1421. https://doi.org/10.1016/j.jclepro.2019.06.225.

R. K. Gond, M. K. Gupta & M. Jawaid, “Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications?, Polymer Composites 42 (2021) 5400. https://doi.org/10.1002/pc.26232.

K. O. Reddy, C. U. Maheswari, M. S. Dhlamini, B. M. Mothudi, V. P. Kommula, J. Zhang & A.V. Rajulu, “Extraction and characterization of cellulose single fibers from native african napier grass?, Carbohydrate Polymers 188 (2018) 85. https://doi.org/10.1016/j.carbpol.2018.01.110.

M. Poletto, V. Pistor, R. M. C. Santana & A. J. Zattera, “Materials produced from plant biomass: part II: evaluation of crystallinity and degradation kinetics of cellulose?, Materials Research 15 (2012) 421. https://doi.org/10.1590/S1516-14392012005000048.

P. Manimaran, S. P. Saravanan & M. Prithiviraj, “Investigation of physico chemical properties and characterization of new natural cellulosic fibers from the bark of Ficus Racemosa?, Journal of Natural Fibers 18 (2019) 274. https://doi.org/10.1080/15440478.2019.1621233.

Published

2024-05-08

How to Cite

Enhancing cellulose fiber properties from chromolaena odorata and anana comosus through novel pulping chemical mixtures. (2024). Journal of the Nigerian Society of Physical Sciences, 6(2), 2033. https://doi.org/10.46481/jnsps.2024.2033

How to Cite

Enhancing cellulose fiber properties from chromolaena odorata and anana comosus through novel pulping chemical mixtures. (2024). Journal of the Nigerian Society of Physical Sciences, 6(2), 2033. https://doi.org/10.46481/jnsps.2024.2033