Entropic system in the relativistic Klein-Gordon Particle

https://doi.org/10.46481/jnsps.2021.209

Authors

  • C. A. Onate Physics Programme, Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria
  • M. C. Onyeaju Department of Physics, Theoretical Physics Group, University of Port Harcourt, Choba, Nigeria

Keywords:

Eigensolutions, Bound states, Wave equation, Theoretic quantity

Abstract

The solutions of Kratzer potential plus Hellmann potential was obtained under the Klein-Gordon equation via the parametric Nikiforov-Uvarov method. The relativistic energy and its corresponding normalized wave functions were fully calculated. The theoretic quantities in terms of the entropic system under the relativistic Klein-Gordon equation (a spinless particle) for a Kratzer-Hellmann’s potential model were studied. The effects of a and b respectively (the parameters in the potential that determine the strength of the potential) on each of the entropy were fully examined. The maximum point of stability of a system under the three entropies was determined at the point of intersection between two formulated expressions plotted against a as one of the parameters in the potential. Finally, the popular Shannon entropy uncertainty relation known as Bialynick-Birula, Mycielski inequality was deduced by generating numerical results.

Dimensions

C. E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal 27 (1948) 379-423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

J. S. Dehesa, A. Martinez-Finkelshtein & V. N. Sorokin, “Quantum-information entropies for highly excited states of single-particle systems with power-type potential”, Physical Review A 66 (2002) 062109. DOI: https://doi.org/10.1103/PhysRevA.66.062109

J. O. A. Idiodi & C. A. Onate, “Entropy, Fisher Information and Variance with Frost-Musulin Potential”, Communications in Theoretical Physics 66 (2016) 269. DOI: https://doi.org/10.1088/0253-6102/66/3/269

J. S. Dehesa, W. V. Assche & R. S. Yáñez, “Information entropy of classical orthogonal Polynomials and their application to the harmonic oscillator and Coulomb potential”, Methods and Applied Analysis 4 (1997) 91. DOI: https://doi.org/10.4310/MAA.1997.v4.n1.a7

S. A. Najafizade, H. Hassanabadi & S. Zarrinkamar, “Nonrelativistic Shannon information entropy for Kratzer potential”, Chinese Physics B 25 (2016) 040301. DOI: https://doi.org/10.1088/1674-1056/25/4/040301

J. S. Dehesa, A. Martinez-Finkelshtein & V. N. Sorokin, “Information-theoretic measures for Morse and Pöschl–Teller potentials”, Molecular Physics 104 (2005) 613. DOI: https://doi.org/10.1080/00268970500493243

C. A. Onate, M. C. Onyeaju, A. N. Ikot, J. O. A. Idiodi & O. J. Ojonubah, “Eigen solutions, Shannon entropy and Fisher information under the Eckart Manning-Rosen potential model”, Journal of the Korean Physical Socciety 70 (2017) 339. DOI: https://doi.org/10.3938/jkps.70.339

J. S. Dehesa, A. Martinez-Finkelshtein & J. Sánchez-Ruiz, “Quantum information entropies and orthogonal polynomials”, Journal of Computation and Applied Mathematics 133 (2001) 23. DOI: https://doi.org/10.1016/S0377-0427(00)00633-6

C.A. Onate & J. O. A. Idiodi, “Fisher Information and Complexity Measure of Generalized Morse Potential Model”, Communications in Theoretical Physics 66 (2016) 275. DOI: https://doi.org/10.1088/0253-6102/66/3/275

X. D. Song, G. H. Sun & S. H. Dong, “Shannon information entropy for an infinite circular well”, Physics Letters A 379 (2015) 1402. DOI: https://doi.org/10.1016/j.physleta.2015.03.020

S. A. Najafizade, H. Hassanabadi & S. Zarrinkamar, “Nonrelativistic Shannon information entropy for Killingbeck potential”, Canadian Journal of Physics 94 (2016) 1085. DOI: https://doi.org/10.1139/cjp-2016-0113

S. A. Najafizade, H. Hassanabadi & S. Zarrinkamar, “Theoretical information measurement in nonrelativistic time-dependent approach”, Indian Journal Physics 92 (2018) 183. DOI: https://doi.org/10.1007/s12648-017-1092-1

C. A. Onate, A. N. Ikot, M. C. Onyeaju, O. Ebomwonyi & J. O. A. Idiodi, “Effect of dissociation energy on Shannon and Rényi entropies”, Karbala International Journal of Modern Science 4 (2018) 134. DOI: https://doi.org/10.1016/j.kijoms.2017.12.004

W. A. Yahya, K. J. Oyewumi & S. D. Sen, “Position and momentum information-theoretic measures of the pseudoharmonic potential”, International Journal of Quantum Chemisrty 115 (2015) 1543. DOI: https://doi.org/10.1002/qua.24971

C. A. Onate, O. Adebimpe, B. O. Adebesin & A. F. Lukman, “Information-theoretic measure of the hyperbolical exponential-type potential”, Turkish Journal of Physics 42 (2018) 402. DOI: https://doi.org/10.3906/fiz-1802-40

W. A. Yahya, K. J. Oyewumi & K. D. Sen, “Information and complexity measures for the ring-shaped modified Kratzer potential”, Indian Journal of Chemistry 53 (2014) 1307.

W. A. Yahya, K. J. Oyewumi & K. D. Sen, “Quantum information entropies for the `l-state Pöschl–Teller-type potential”, Journal of Mathematical Chemistry 54 (2018) 1810. DOI: https://doi.org/10.1007/s10910-016-0650-7

C. A. Onate, M. C. Onyeaju, E. E. Ituen, A. N. Ikot, O. Ebomwonyi, J. O. Okoro & K. O. Dopamu, “Eigensolutions, Shannon entropy and Information energy for Tietz-Hua potential”, Indian Journal Physics 92 (2018) 487. DOI: https://doi.org/10.1007/s12648-017-1124-x

S. E. Massen, “Application of information entropy to nuclei”, Physical Review C 67 (2003) 014314. DOI: https://doi.org/10.1103/PhysRevC.67.014314

D. Dutta & P. Roy, “Information entropy for conditionally exactly solvable potentials”, Journal of Mathematical Physics 52 (2011) 032104. DOI: https://doi.org/10.1063/1.3566977

S. Dong, S. G. Sun, S. H. Dong & J. P. Draayer, “Quantum information entropies for a squared tangent potential well”, Physics Letters A 378 (2014) 124. DOI: https://doi.org/10.1016/j.physleta.2013.11.020

S. Lopez-Rosa, J. Montero, P. Sanchez-Moreno, J. Venegas & J. S. Dehesa, “Position and momentum information-theoretic measures of a D-dimensional particle in a box”, Journal of Mathematical Chemistry 49 (2011) 971. DOI: https://doi.org/10.1007/s10910-010-9790-3

G. Yanez-Navarro, G. H. Sun, T. Dytrych, K. D. Lanney, S. H. Dong & J. P. Draayer, “Quantum information entropies for position-dependent mass Schrödinger problem”, Annals of Physics 348 (2014) 153. DOI: https://doi.org/10.1016/j.aop.2014.05.018

S. Liu, “On the relationship between densities of Shannon entropy and Fisher information for atoms and molecules”, Journal of Chemical Physics 126 (2007) 191109. DOI: https://doi.org/10.1063/1.2741244

C. A. Onate, M. C. Onyeaju, A. N. Ikot & O. Ebomwonyi, “Eigen solutions and entropic system for Hellmann potential in the presence of the Schrödinger equation”, European Physical Journal Plus 132 (2017) 462. DOI: https://doi.org/10.1140/epjp/i2017-11729-8

Y. P. Varshni & R. C. Shukla, “Potential energy functions for alkali halide molecules” Journal of Molecular Physics 16 (1965) 63. DOI: https://doi.org/10.1016/0022-2852(65)90085-8

C. A. Onate, M. C. Onyeaju, A. N. Ikot, O. Ebomwonyi & J. O. A. Idiodi, “Dirac equation with a new tensor interaction under spin and pseudospin symmetries”, Communications in Theoretical Physics 70 (2018) 294. DOI: https://doi.org/10.1088/0253-6102/70/3/294

O. Bayrak, I. Boztosun & H. Ciftci, “Exact analytical solutions to the Kratzer potential by the asymptotic iteration method”, International Journal of Quantum Chemistry, 107 (2007) 540. DOI: https://doi.org/10.1002/qua.21141

C. Tezcan & R. Sever, “A General Approach for the Exact Solution of the Schrödinger Equation”, International Journal of Theoretical Physics 48 (2009) 337. DOI: https://doi.org/10.1007/s10773-008-9806-y

O. Ebomwonyi, C. A. Onate, M. C. Onyeaju & A. N. Ikot, “Any l-states solutions of the Schrödinger equation interacting with Hellmann-generalized Morse potential model”, Karbala International Journal of Modern Science 3 (2017) 59. DOI: https://doi.org/10.1016/j.kijoms.2017.03.001

B. J. Falaye, “The Klein-Gordon equation with ring-shaped potentials: Asymptotic iteration method”, Journal of Mathematical Physics 53 (2012) 082107. DOI: https://doi.org/10.1063/1.4746697

B. J. Falaye, “Exact solutions of the Klein-Gordon equation for spherically asymmetrically singular oscillator” Few Body System 53 (2012) 563. DOI: https://doi.org/10.1007/s00601-012-0469-0

A. D. Antia, A. N. Ikot, I. O. Akpan & O. A. Awoga, “Approximate solutions of the Klein-Gordon equation with unequal scalar and vector modified Hylleraas potential”, Indian Journal of Physics 87 (2013) 155. DOI: https://doi.org/10.1007/s12648-012-0210-3

A. D. Antia, A. N. Ikot, H. Hassanabadi & E. Maghsoodi, “Bound state solutions of the Klein-Gordon equation with Mobius square plus Yukawa potentials”, Indian Journal of Physics 87 (2013) 1133. DOI: https://doi.org/10.1007/s12648-013-0336-y

C. N. Isonguyo, I. B. Okon, A. N. Ikot & H. Hassanabadi, “Solutions of Klein-Gordon equation for some diatomic molecules with new generalized Morse-like potential by SUSYQM”, Bulletin Korean Chemimal Society 35 (2014) 3443. DOI: https://doi.org/10.5012/bkcs.2014.35.12.3443

A. N. Ikot, B. C. Lulfuoglu, M. I. Ngwueke, M. E. Udoh, S. Zare & H. Hassanabadi, “Klein-Gordon equation particles in exponential-type molecule potentials and their thermodynamic properties in D-dimensions”, European Physical Journal Plus 131 (2016) 131. DOI: https://doi.org/10.1140/epjp/i2016-16419-5

A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. C. Umoren & C. N. Isonguyo, “Approximate solutions of the Klein-Gordon equation with improved Manning-Rosen potential in D-dimensions using SUSYQM”, Chinses Physics B 23 (2014) 120303. DOI: https://doi.org/10.1088/1674-1056/23/12/120303

C. A. Onate, M. C. Onyeaju, A. N. Ikot & O. J. Ojonubah, “Analytical solutions of the Klein-Gordon equation with a combined potential”, Chinese Journal of Physics 54 (2018) 820. DOI: https://doi.org/10.1016/j.cjph.2016.08.007

A. Alhaidari, H. Bahlouli & A. Al-Hassan, “Dirac and Klein–Gordon equations with equal scalar and vector potentials”, Physics Letters A 349 (2006) 87. DOI: https://doi.org/10.1016/j.physleta.2005.09.008

C. A. Onate, “Relativistic and nonrelativistic solutions of inversely quandratic Yukawa potential”, African Review of Physics 8 (2013) 325.

C. A. Onate, A. N. Ikot, M. C. Onyeaju & M. E. Udoh, “Bound state solutions of the D-dimensional Klein-Gordon equation with hyperbolic potential”, Karbala International Journal of Modern Science 3 (2017) 1. DOI: https://doi.org/10.1016/j.kijoms.2016.12.001

C. -S. Jia, T. Chen & S. He, “Bound state solutions of the Klein–Gordon equation with the improved expression of the Manning–Rosen potential energy model”, Physics Letters A 377 (2013) 682. DOI: https://doi.org/10.1016/j.physleta.2013.01.016

T, Chen, S. –R. Lin & C. –S. Jia, “Solutions of the Klein-Gordon equation with the improved Rosen-Morse potential energy model”, European Physical Journal Plus 128 (2013) 69. DOI: https://doi.org/10.1140/epjp/i2013-13069-1

X. –J. Xie & C. –S. Jia, “Solutions of the Klein–Gordon equation with the Morse potential energy model in higher spatial dimensions”, Physica Scripta 90 (2015) 035207. DOI: https://doi.org/10.1088/0031-8949/90/3/035207

B. Tang & C. –S. Jia, “Relativistic spinless rotation-vibrational energies of carbon monoxide”, European Physical Journal Plus 132 (2017) 375. DOI: https://doi.org/10.1140/epjp/i2017-11657-7

J. –Y. Liu, J. –F. Du & C. –S. Jia, “Molecular spinless energies of the improved Tietz potential energy model, “European Physical Journal Plus 128 (2013) 139. DOI: https://doi.org/10.1140/epjp/i2013-13139-4

X. –Y. Chen, T. Chen & C. –S. Jia, “Solutions of the Klein-Gordon equation with the improved Manning-Rosen potential energy model in D dimensions”, European Physical Journal Plus 129 (2014) 75. DOI: https://doi.org/10.1140/epjp/i2014-14075-5

C. –S. Jia, X. –L. Peng & S. He, “Molecular Spinless Energies of the Modified Rosen-Morse Potential Energy Model”, Bulletin of the Korean Chemical Society 35 (2014) 2699. DOI: https://doi.org/10.5012/bkcs.2014.35.9.2699

C. –S. Jia, J. –W. Dai, L. –H. Zhang, J. –Y. Liu & G. –D. Zhang, “Molecular spinless energies of the modified Rosen–Morse potential energy model in higher spatial dimensions”, Chemical Physics Letters 619 (2015) 54. DOI: https://doi.org/10.1016/j.cplett.2014.11.039

Han-Bin Liu1 Liang-Zhong Yi2 Chun-Sheng Jia, “Solutions of the Klein–Gordon equation with the improved Tietz potential energy model”, Journal of Mathematical Chemistry 56 (2018) 2982. DOI: https://doi.org/10.1007/s10910-018-0927-0

A. Rényi, (1961). “On Measures of Entropy and Information”, Proceeding 4 th Berkeley Symposium in Mathematics and Statistical Probability 1 (1961) 547.

C. Tsallis, “Possible generalization of Boltzmann-Gibbs Statistics”, Journal of Statistical Probability 52 (1988) 479. DOI: https://doi.org/10.1007/BF01016429

Shannon entropy for position space

Published

2021-08-29

How to Cite

Onate, C. A., & Onyeaju, M. C. (2021). Entropic system in the relativistic Klein-Gordon Particle. Journal of the Nigerian Society of Physical Sciences, 3(3), 165–171. https://doi.org/10.46481/jnsps.2021.209

Issue

Section

Original Research