Estimation of some Radio Propagation Parameters using Measurements of Surface Meteorological Variables in Ede, Southwest Nigeria

Authors

  • A. A. Willoughby Department of Physical Sciences, Redeemer’s University, P.M.B. 230, Ede, Osun State 232101, Nigeria
  • M. E. Sanyaolu Department of Electrical and Electronic Engineering, Redeemer’s University, P.M.B. 230, Ede, Osun State 232101, Nigeria
  • M. O. Osinowo Department of Electrical and Electronic Engineering, Redeemer’s University, P.M.B. 230, Ede, Osun State 232101, Nigeria
  • A. O. Soge Department of Physical Sciences, Redeemer’s University, P.M.B. 230, Ede, Osun State 232101, Nigeria
  • O. F. Dairo Department of Electrical and Electronic Engineering, Redeemer’s University, P.M.B. 230, Ede, Osun State 232101, Nigeria

Keywords:

Arduino IDE, Refractivity Gradients, Radio Propagation, Multipath fading, Data acquisition

Abstract

A data acquisition system that utilised the open-source Arduino platform was developed to take real-time ground measurements of primary radio climatological variables of pressure, temperature, and relative humidity at Ede, a tropical station in southwest Nigeria (7.7349^{o} N, 4.4439^{o} E). Surface radio refractivity was deduced from these variables and used to estimate refractivity gradients at 100 m and 1000 m heights from the exponential reference atmosphere model for terrestrial propagation. Secondary radio propagation parameters such as refractivity gradients, the effective-earth-radius-factor, k, and geoclimatic factor, K, essential parameters for quick application in the planning and design of line-of-sight radio link systems, were also deduced. Data acquired from the device were compared to those obtained from the Re-Analyses (ERA-5) satellite database of the European Centre for Medium-Range Weather Forecast (ECMWF) 2020/2021. Aside from logging data on a micro secure digital (SD) card, measurements were displayed on a liquid crystal display (LCD). The peripheral Arduino-compatible meteorological sensors were connected to the analog inputs of the ATMega328 in the Arduino independent development environment (IDE), and the unit was powered by a 12 V battery charged by a 50-watt solar module. Results showed that slightly higher values of the ERA-5 data characterise the dry months from November to March, while the wet months displayed higher values of the Arduino-derived measured data. The accuracies of the data collected were compared using Mean Percentage Error (MPE) performance indicator. The interpretation is that the mean difference between the Arduino inferred measurements and the ERA-5 data is less than 10%, which is an indication of the measurement accuracy.

Dimensions

M. P. M. Hall, Effect of the troposphere on radio communication, IEEE Electromagnetic wave series, Peter Peregrinus Ltd, United Kingdom (1989) 105.

B. R. Bean, “The geographical height distribution of the gradient of refractive index”, Proceedings of the IRE 41 (1953) 549.

J. A. Lane, “The radio refractive index gradient over the British Isles”, Journal of Atmospheric and Solar-Terrestrial Physics, 21 (1961) 157.

E. K. Smith & S. Weintraub, “The constants in the equation for atmospheric refractive index at radio frequencies”, Proc. IRE 41 (1953) 1035.

A. A. Willoughby, T. O. Aro & I. E. Owolabi, “Seasonal variations of radio refractivity gradients in Nigeria”, Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 417.

B. R. Bean & E. J. Dutton, Radio Meteorology, National Bureau of Standards Monograph 92 (1966) 9.

ITU-R P.530-16, Propagation data and prediction methods required for the design of terrestrial line-of-sight systems, International Telecommunication Union, ITU, Geneva, Switzerland (2015).

ITU-R Recommendation P.453-9, The radio refractive index: Its formula and refractivity data, International Telecommunication Union, ITU, Geneva, Switzerland (2003).

ITU-R Rec 834-4, Effects of Tropospheric Refraction on Radiowave Propagation, International Telecommunication Union, ITU, Geneva, Switzerland (2003).

A. T. Adediji, “Reduced-To-Sea-Level Value of Microwave Radio Refractivity Over Three Stations in Nigeria”, Nigeria Journal of Pure and Applied Physics 7 (2017) 19.

L. B. Kolawole, “Climatological Variations of Surface Radio Refractivity in Nigeria”, Bull. Nigeria Institute of Physics 4 (1980) 97.

L. B. Kolawole & J. J. Owonubi, “The surface radio refractivity over Africa”, Nigerian Journal of Science 16 (1980) 441.

B. Adeyemi & I. Emmanuel, “Radio Refractivity Gradient over Nigeria using CM-SAF Satellite Retrieved Data”, Nigerian Journal of Technological Research 7 (2012).

S. E. Falodun & P. N. Okeke, “Radiowave Propagation Measurements in Nigeria (Preliminary Reports)”, Theoretical and Applied Climatology 113 (2013) 127.

O. F. Dairo & L. B. Kolawole, “Radio refractivity gradients in the lowest 100 m of the atmosphere over Lagos, Nigeria in the rainy-harmattan transition phase”, Journal of Atmospheric and Solar-Terrestrial Physics 167 (2018) 169.

O. J. Abimbola, S. O. Bada, A. O. Falaiye, Y. M. Sukam, M. S. Otto & S. Muhammad, "Estimation of radio refractivity from satellite-derived meteorological data over a decade for West Africa", Scientific African 14 (2021) e01054, doi: 10.1016/j.sciaf.2021.e01054.

O. A. Falaiye, O. J. Abimbola, J. Omojola & D. S. Akinyanju, ”Spacio- Temporal Variation of Radio Refractivity in Lafia, Nasarawa state using CM SAF ATOVS Satellite Data”, FULAFIA Journal of Science and Technology 2 (2016) 111.

O. L. Ojo, J. S. Ojo & P. Akinyemi, “Characterisation of secondary radioclimatic variables for microwave and millimeter wave link design in Nigeria”, Indian Journal of Radio & Space Physics 46 (2017) 83.

A. Abu-Almal & K. Al-Ansari, “Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE”, International Journal of Antennas and Propagation 2010 (2010) 245070, doi: 10.1155/2010/245070.

I. J. Etokebe, M. C. Uko & I. U. Chiwe, “Determination of Refractivity Gradient and Geoclimatic Factor Using Radiosonde Data and Inverse Distance Weighting Spatial Interpolation for Missing Data”, International Journal of Systems Science and Applied Mathematics 1 (2016) 76.

I. Emmanuel, B. Adeyemi & K. D. Adedayo, “Estimation of Refractivity Gradient and Geoclimatic Factor for Radio Link Design in Nigeria”, Physical Science International Journal 19 (2018) 1, doi: 10.9734/PSIJ/2018/34489.

A. Adane, A. A. Yahia, E. Mameri & A. Adane, “Design of a Microcontroller-Based Data Acquisition System for Ground Weather Observations: Evaluation of Radio Refractivity of Air”, Int. J. Communications, Network and System Sciences 7 (2014) 355.

M. Benghamen, “A low-cost wireless data acquisition system for weather station monitoring”, Renewable Energy 35 (2010) 862.

M. Fuentes, M. Vivar, J. M. Burgos, J. Aguilera & J.A. Vacas, “Design of an accurate low-cost autonomous data logger for P.V. system monitoring using Arduino that complies with IEC standards”, Solar Energy Materials & Solar Cells 130 (2014) 529.

S. Rosiek & F. J. Batlles, “A microcontroller-based data-acquisition system for meteorological station monitoring”, Energy Conversion Management 49 (2008) 3746.

R. Mukaro & X. F. Carelse, “A microcontroller-based data acquisition system for solar radiation and environmental monitoring”, IEEE Trans. Instrumentation Measurements 48 (1999) 1232.

R. Mukaro, X. F. Carelse & L. Olumekor, “First performance analysis of a silicon-cell microcontroller-based solar radiation monitoring”, Solar Energy 63 (1998) 313.

K. E. Ukhurebor, I. C. Abiodun, S. O. Azi, I. Otete & L. E. Obogai, “A Cost-Effective Weather Monitoring Device”, Archives of Current Research International 7 (2017) 1.

R. Sidqi, B. R. Rynaldo, S. H. Suroso & R. Firmansyah, “Arduino Based Weather Monitoring Telemetry System Using NRF24L01+”, IOP Conf. Series: Materials Science and Engineering 336 (2018) 012024.

M. Ujoodha, A. Pultoo & A. Oojorah, “Climate Monitoring Using an Arduino-Based Mobile Weather Station and Open-Source Codes”, Journal of Education and Social Sciences 16 (2020) 105.

D. Djuni & I. G. A. P. Raka Agung, “Design and Implementation of Arduino-Based Weather Monitoring System in Rural”, Journal of Electrical, Electronics and Informatics, 3 (2020) 58, doi: 10.24843/JEEI.2019.v03.i02.p06.

S. N. Mahmood & F. F. Hasan, “Design of Weather Monitoring System Using Arduino Based Database Implementation”, Journal of Multidisciplinary Engineering Science and Technology (JMEST) 4 (2017) 7109.

E. L. Omoze, T. J. Timiyo & P. E. Orukpe, “Development of an Automatic Weather Monitoring System”, IOSR Journal of Electrical and Electronics Engineering, 14 (2019) 61.

J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui & S. El Hajjaji, “IoT-Based Data Logger for Weather Monitoring Using Arduino-Based Wireless Sensor Networks with Remote Graphical Application and Alerts”, Big Data Mining and Analytics 4 (2021) 25, doi: 10.26599/BDMA.2020.9020018.

H. Saini, A. Thakur & N. Kumar, “Arduino based automatic wireless weather station with remote graphical application and alerts”, 3rd International Conference on Signal Processing and Integrated Networks (SPIN). (2016) doi: 10.1109/SPIN.2016.7566768.

M. R. Laskar, R. Bhattacharjee, M. SauGiri & P. Bhattacharya, “Weather Forecasting using Arduino Based Cube-Sat”, Procedia Computer Science 89 (2016) 320.

P. S. N. Reddy, D. V. Vardhan, K. T. K. Reddy & P. A. K. Reddy, “An IoT-based low-cost weather monitoring and alert system using node MCU”, in Smart Computing and Informatics, S. C. Satapathy, V. Bhateja, and S. Das, eds. Singapore: Springer (2018) 265.

K. Krishnamurthi, S. Thapa, L. Kothari & A. Prakash, “Arduino Based Weather Monitoring System”, International Journal of Engineering Research and General Science 3 (2015) 452.

V. Lakhara, P. Kurade, T. Pawar, A. Chougule & M. Asurlekar, “Real Time Weather Monitoring System Implementation Based on Internet of Things” Available at http://dx.doi.org/10.2139/ssrn.3866819.

O. L. Ojo, M. O. Ajewole, A. T. Adediji & J. S. Ojo, “Estimation of Clear-Air Fades Depth Due to Radio Climatological Parameters for Microwave Link Applications in Akure, Nigeria”, International Journal of Engineering and Applied Sciences 7 (2015) 1.

A. T. Adediji, “Reduced-to-Sea-Level Value of Microwave Radio Refractivity over three Stations in Nigeria”, Nigeria Journal of Pure and Applied Physics 7 (2017) 19.

Centre for Atmospheric Research-National Space Research and Development Agency CAR-NASRDA. Available on-line: https://carnasrda.com/trodan1/ (Accessed on 15th October 2021).

Spakfun.com. Available on-line: https://learn.sparkfun.com/tutorials/bmp180-barometric-pressure-sensor-hookup-/all. (Accessed on 15th October 2021)

BMP180 Digital barometric pressure sensor. Available on-line: https://ae-bst.resource.bosch.com/media/_tech/media/product_flyer/BST-BMP180-FL000.pdf (Accessed on 15th October 2021)

Analog Devices. Available on-line: https://www.instructables.com/How-to-use-DHT-22-sensor-Arduino-Tutorial/ (Accessed on 15th October 2021).

Project Hub. Available on-line: https://create.arduino.cc/projecthub/mafzal/temperature-monitoring-with-dht22-arduino-15b013 (Accessed on 15th October 2021).

Adafruit. Available on-line: https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout/arduino-usage (Accessed on 16th November 2021).

Arduino. Available on-line: https://www.arduino.cc/en/Reference/SDCardNotes (Accessed on 16th November 2021).

Published

2022-12-11

How to Cite

Estimation of some Radio Propagation Parameters using Measurements of Surface Meteorological Variables in Ede, Southwest Nigeria. (2022). Journal of the Nigerian Society of Physical Sciences, 5(1), 875. https://doi.org/10.46481/jnsps.2023.875

Issue

Section

Original Research

How to Cite

Estimation of some Radio Propagation Parameters using Measurements of Surface Meteorological Variables in Ede, Southwest Nigeria. (2022). Journal of the Nigerian Society of Physical Sciences, 5(1), 875. https://doi.org/10.46481/jnsps.2023.875