Effect of temperature on optical, structural, morphological and antibacterial properties of biosynthesized ZnO nanoparticles

Authors

  • G. Kamarajan PG and Research Department of Physics, D.G. Government Arts College (Affiliated to Bharathidasan University, Trichy), Mayiladuthurai, Tamil Nadu-609001, India.
  • D. Benny Anburaj PG and Research Department of Physics, D.G. Government Arts College (Affiliated to Bharathidasan University, Trichy), Mayiladuthurai, Tamil Nadu-609001, India.
  • V. Porkalai Nethaji Subash Chandra Bose College for Co-ed (Affiliated to Bharathidasan University, Trichy), Senthemangalam, Thiruvarur, Tamilnadu-614001, India.
  • A. Muthuvel PG and Research Department of Physics, T.B.M.L. College (Affiliated to Bharathidasan University, Trichy), Porayar, Tamil Nadu-609307, India.
  • G. Nedunchezhian PG and Research Department of Physics, Thiru. Vi. Ka. Government Arts College (Affiliated to Bharathidasan University, Trichy), Thiruvarur, Tamil Nadu-61003, India.

Keywords:

Nanoparticles, Ocimum sanctum, ZnO, SEM, DLS, Antibacterial

Abstract

Nanomaterials can be produced by using nontoxic biological compounds that are both eco-friendly and economically viable. Temperature dependent ecological synthesis of ZnO nanoparticles was carried out with leaf extract of Ocimum sanctum. An electron microscope study confirmed that a temperature of 400 oC was optimal for the formation of ZnO nanoparticles generated by biosynthesizing ZnO nanoparticles. The normal crystalline size of biosynthesized ZnO nanoparticles calculated via XRD analysis are found to be 18, 12 and 17 nm for 300 - 500 oC, respectively. The direct optical band gap energy deducted from Tauc approximation range to be 3.32-3.20 eV. In SEM analysis, depending on the temperature of the synthesis conditions, different ZnO morphologies are also found. Functional groups analysis confirmed the incidence of carboxyl and amide groups in the O. sanctum leaf extract. The ZnO nanoparticles analysed at room temperature using photoluminescence, a broad visible band is observed around 382 nm for all samples. Furthermore, this study determines that the synthesized ZnO nanoparticles provide antimicrobial efficacy against clinical strains of Bacillus subtilis and Staphylococcus aureus, as well as against standard strains of Escherichia coli. Several fields, including cosmetics and pharmaceuticals, can benefit from biosynthesized nanoparticles.

Dimensions

B. H. Abbasi, H. Fazal, N. Ahmad, M. Ali, N. Giglioli-Guivarch, & C. Hano, “Nanomaterials for cosmeceuticals: nanomaterials-induced advancement in cosmetics, challenges, and opportunities”, Nanocosmetics (2020) 79.

P. Thamilmaran, M. Arunachalam, S. Sankarrajan, & K. Sakthipandi, “On-line ultrasonic characterisation of barium doped lanthanum perovskites”, Physica B: Condensed Matter 466 (2015) 19.

A. Muthuvel, M. Jothibas, & C. Manoharan, “Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity”, J. Environ. Chem. Eng. 8 (2020) 103705.

A. Muthuvel, M. Jothibas, & C. Manoharan, “Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity”, Nanotechnol. Environ. Eng. 5 (2020) 2.

A. A. Faremi, S. S. Oluyamo, K. D. Adedayo, Y. A. Odusote, & O. I. Olusola, “Influence of Silicon Nanoparticle on the Electrical Properties of Heterostructured CdTe/CdS thin films based Photovoltaic Device”, Journal of the Nigerian Society of Physical Sciences (2021) 256. doi:10.46481/jnsps.2021.267

A. F. Afolabi, S. S. Oluyamo, & I. A. Fuwape, “Synthetic Characterization of Cellulose from Moringa oleifera seeds and Potential Application in Water Purification”, Journal of the Nigerian Society of Physical Sciences (2021). doi:10.46481/jnsps.2021.206

C. Thangamani, PV Kumar, K Gurushankar, & K Pushpanathan, “Structural and size dependence magnetic properties of Mn-doped NiO nanoparticles prepared by wet chemical method”, Journal of Materials Science: Materials in Electronics 31 (2020) 11101.

A. Muthuvel, N. M. Said, M. Jothibas, K. Gurushankar, & V. Mohana, “Microwave- assisted green synthesis of nanoscaled titanium oxide: photocatalyst, antibacterial and antioxidant properties”, J. Mater. Sci.: Mater. Electron. 32 (2021) 23522.

M. Satheshkumar, B. Anand, A. Muthuvel, M. Rajarajan, V. Mohana, & A. Sundaramanickam, “Enhanced photocatalytic dye degradation and antibacterial activity of biosynthesized ZnO-NPs using Curry leaves extract with coconut water”, Nanotechnol. Environ. Eng. 5 (2020) 3.

K. Gurushankar, S. Jeyavijayan, M. Gohulkumar & K. Viswanathan, “Synthesis, Optical and Morphological Studies of ZnO Nanoparticles Capped with PVP as a Surfactant”, International Journal of Chemical Sciences 16 (2018) 240.

S. Y. Bae, H. W. Seo, & J. Park, “Vertically Aligned Sulfur-Doped ZnO Nanowires Synthesized via Chemical Vapor Deposition”, ChemInform, 35 (2004) 30.

N. Goswami & D. K. Sharma, “Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique”, Physica E Low Dimens. Syst. Nanostruct. 42 (2010) 1675.

S. Bazazi, N. Arsalani, A. Khataee, & A. G. Tabrizi, “Comparison of ball milling- hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance”, J. Ind. Eng. Chem. 62 (2018) 265.

W. Chen, C. Yao, J. Gan, K. Jiang, Z. Hu, J. Lin, N. Xu, J. Sun, & J. Wu, “ZnO colloids and ZnO nanoparticles synthesized by pulsed laser ablation of zinc powders in water”, Mater Sci Semicond Process 109 (2020) 104918.

D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, & M. Maaza, “Synthesis and characterization of ZnO-CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation”, J. Semicond. 39 (2018) 033001.

M. Alavi & A. Nokhodchi, “Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria”, Drug Discov. 26 (2021) 1953.

N. Al-Zaqri, A. Muthuvel, M. Jothibas, A. Alsalme, F. A. Alharthi, & V. Mohana, “Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities”, Inorg. Chem. Commun. 127 (2021) 108507.

K. Elumalai & S. Velmurugan, “Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)”, Appl. Surf. Sci. 345 (2015) 329.

J. Santhoshkumar, S. V. Kumar, & S. Rajeshkumar, “Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen”, Resource-Efficient Technologies 3 (2017) 459.

N. Matinise, X. G. Fuku, K. Kaviyarasu, N. Mayedwa, & M. Maaza, “ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties and mechanism of formation”, Appl. Surf. Sci. 406 (2017) 339.

M. A. Ansari, M. Murali, D. Prasad, M. A. Alzohairy, A. Almatroudi, M. N. Alomary, A. C. Udayashankar, S. B. Singh, S. M. M. Asiri, B. S. Ashwini, H. G. Gowtham, N. Kalegowda, K. N. Amruthesh, T. R. Lakshmeesha, & S. R. Niranjana, “Cinnamomum verum Bark Extract Mediated Green Synthesis of ZnO Nanoparticles and Their Antibacterial Potentiality”, Biomolecules 10 (2020) 336.

A. Chaudhary, S. Sharma, A. Mittal, S. Gupta, & A. Dua, “Phytochemical and antioxidant profiling of Ocimum sanctum”, Journal of Food Science and Technology, 57 (2020) 3852.

A. Muthuvel, K. Adavallan, K. Balamurugan, & N. Krishnakumar, “Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties”, Biomed. Prev. Nutr. 4 (2014) 325.

S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, & M. Shobiya, “Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications”, Biomed. Pharmacother. 84 (2016) 1213.

A. Khorsand Zak, W. H. Abd. Majid, M. R. Mahmoudian, M. Darroudi, & R. Yousefi, “Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study”, Adv Powder Technol. 24 (2013) 618.

V. Ramasamy, V. Mohana, & V. Rajendran, “Characterization of Ca doped CeO2 quantum dots and their applications in photocatalytic degradation”, OpenNano. 3 (2018) 38.

A. M. Ismail, A. A. Menazea, H. A. Kabary, A. E. El-Sherbiny, & A. Samy, “The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol-Gel method”, J. Mol. Struct. 1196 (2019) 332.

J. Emegha, B. Olofinjana, K. Ukhurebor, U. Aigbe, S. Azi, & M. Eleruja, “Effect of Deposition Temperature on the Properties of Copper-Zinc Sulphide Thin Films using Mixed Copper and Zinc Dithiocarbamate Precursors”, Gazi University Journal of Science, Nov. 2021.

P. A. Arciniegas-Grijalba, M. C. Patino-Portela, L. P. Mosquera-Sánchez, J. A. Guerrero-Vargas, & J. E. Rodriguez-Paez, “ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor”, Appl. Nanosci. 7 (2017) 225.

A. Abioye, M. Naqvi, D. Pattni, & A. A. Adepoju-Bello, “Non-intuitive Behavior of Polymer-Ciprofloxacin Nanoconjugate Suspensions: a Tool for Flexible Oral Drug Delivery”, AAPS Pharm. Sci. Tech. 22 (2021) 7.

K. Velsankar, S. Sudhahar, G. Parvathy, & R. Kaliammal, “Effect of cytotoxicity and aAntibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent”, Mater. Chem. Phys. 239 (2020) 121976.

U. Wijesinghe, G. Thiripuranathar, H. Iqbal, & F. Menaa, “Biomimetic Synthesis, Characterization, and Evaluation of Fluorescence Resonance Energy Transfer, Photoluminescence, and Photocatalytic Activity of Zinc Oxide Nanoparticles”, Sustainability 13 (2021) 2004.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, & R. H. Friend, “High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors”, J. Phys. Chem. Lett. 5 (2014) 1421.

B. Lallo da Silva, B. L. Caetano, B. G. Chiari-Andréo, R. C. L. R. Pietro, & L. A. Chiavacci, “Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification”, Colloids Surf. B: Biointerfaces 177 (2019) 440.

Published

2022-08-20

How to Cite

Effect of temperature on optical, structural, morphological and antibacterial properties of biosynthesized ZnO nanoparticles. (2022). Journal of the Nigerian Society of Physical Sciences, 4(3), 892. https://doi.org/10.46481/jnsps.2022.892

Issue

Section

Original Research

How to Cite

Effect of temperature on optical, structural, morphological and antibacterial properties of biosynthesized ZnO nanoparticles. (2022). Journal of the Nigerian Society of Physical Sciences, 4(3), 892. https://doi.org/10.46481/jnsps.2022.892