Effect of benzophenone on the physicochemical properties of N-CNTs synthesized from 1-ferrocenylmethyl (2-methylimidazole) catalyst

https://doi.org/10.46481/jnsps.2020.105

Authors

  • Ayomide Labulo Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • Elijah Temitope Adesuji Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • Charles Ojiefoh Oseghale Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
  • Elias Emeka Elemike Department of Chemistry, Federal University of Petroleum, Nigeria
  • Adamu Usman
  • Akinola Kehinde Akinola Department of Chemistry Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Enock Olugbenga Dare Department of Chemistry Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

Keywords:

Chemical vapour deposition, nitrogen-doped carbon nanotubes, 1-ferrocenylmethyl(2-methylimidazole), X-ray photoelectron spectroscopy

Abstract

Vertically-aligned nitrogen-doped carbon nanotubes (v-N-CNTs) were synthesized \textit{via} the chemical vapour deposition (CVD) technique. 1-ferrocenylmethyl(2-methylimidazole) was employed as the source of the Fe catalyst and was dissolved in different ratios of acetonitrile/benzophenone feedstock which served as both the carbon, nitrogen, and oxygen sources. The morphological difference in N-CNTs was as a result of increased oxygen concentration in the reaction mix and not due to water vapour formation as observed in the oxygen-free experiment, indicating specifically, the impact of oxygen. Raman and X-ray photoelectron spectroscopy (XPS) revealed surface defects and grafting of oxygen functional groups on the sidewall of N-CNTs. The FTIR data showed little or no effect as oxygen concentration increases. XPS analysis detected the type of nitrogen species (\textit{i.e.} pyridinic, pyrrolic, graphitic, or molecular nitrogen forms) incorporated in the N-CNT samples. Pyrrolic nitrogen was dominant and increased (from 8.6 to 11.8 at.\%) as oxygen concentration increases in the reaction precursor. An increase in N content was observed with the introduction of a lower concentration of oxygen, followed by a gradual decrease at higher oxygen concentration. Our result suggested that effective control of the reactant mixtures can manipulate the morphology of N-CNTs.

Dimensions

J. Zhang, X.B Yi, S. Liu, H.L Fan, W. Ju, Q.C & W. J. Ma, “Vertically aligned carbon nanotubes/carbon fibre paper composite to support Pt nanoparticles for the direct methanol fuel cell application”, J Phys Chem Solids 102 (2017) 99. DOI: https://doi.org/10.1016/j.jpcs.2016.11.006

W. Li, C. Liang , J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun & Q. Xin, “Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell”, Carbon 40 (2002) 787. DOI: https://doi.org/10.1016/S0008-6223(02)00039-8

Z. Bo, D. Hu, J. Kong, J. Yan & K. Cen, “Performance of vertically oriented graphene supported platinum-ruthenium bimetallic catalyst for methanol oxidation”, J Power Sources 273 (2015) 530. DOI: https://doi.org/10.1016/j.jpowsour.2014.09.125

S. Hong, J. Lee, K. Do, M. Lee, J.H Kim, S. Lee & D.H Kim, “Stretch-able electronics: Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices”, Adv Funct Mater 27 (2017) 1770285. DOI: https://doi.org/10.1002/adfm.201770285

E. Titus, M.K Singh, G. Cabral, V. Paserin, P.R. Babu, W.J. Blau, J. Ventura, J.P. Araujo & J. Gracio, “Fabrication of vertically aligned carbon nanotubes for spintronic device applications”, J Mater Chem 19 (2009) 7216. DOI: https://doi.org/10.1039/b907717k

B-J. Lee & G-H, “Jeong Efficient surface functionalization of vertically-aligned carbon nanotube arrays using an atmospheric pressure plasma jet system”, Fuller Nanotub Car N 26 (2018) 116. DOI: https://doi.org/10.1080/1536383X.2017.1409211

T. Tsai, C. Lee, N. Tai & Tuan W, “Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices”, Appl Phys Lett 5 (2009) 013107. DOI: https://doi.org/10.1063/1.3167775

S. Ahadian, U. Naito, V.J. Surya, S. Darvishi, M. Estili, X. Liang, K. Naka- jima, H. Shiku, Y. Kawazoe & T. Matsue, “Fabrication of poly (ethylene glycol) hydrogels containing vertically and horizontally aligned graphene using dielectrophoresis: An experimental and modelling study”, Carbon 123 (2017) 460. DOI: https://doi.org/10.1016/j.carbon.2017.07.082

N. Zhao, Z. Ma, H. Song, Y. Xie & M. Zhang Enhancement of bio- electricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibres anode in a microbial fuel cell. Electrochim Acta. 296 (2018) 69. DOI: https://doi.org/10.1016/j.electacta.2018.11.039

W. Yang, Thordarson P, J.J Gooding, S.P Ringer & F. Braet, “Carbon nan- otubes for biological and biomedical applications”, Nanotechnol 18 (2007) 412001. DOI: https://doi.org/10.1088/0957-4484/18/41/412001

H. Chen, A. Roy, J-B. Baek, L. Zhu, J. Qu & L. Dai, “Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications”, Mater Sci Eng: R: Rep 70 (2010) 63. DOI: https://doi.org/10.1016/j.mser.2010.06.003

S.N Kim, J.F. Rusling & F. Papadimitrakopoulos, “Carbon nanotubes for electronic and electrochemical detection of biomolecules”, Adv Mater 19 (2007) 3214. DOI: https://doi.org/10.1002/adma.200700665

L.K. Putri, B.J Ng, W-J. Ong, H.W Lee, W.S Chang & S.P Chai, “Heteroatom nitrogen-and boron-doping as a facile strategy to improve photo-catalytic activity of standalone reduced graphene oxide in hydrogen evolution”, ACS Appl Mater Interface 9 (2017) 4558. DOI: https://doi.org/10.1021/acsami.6b12060

W. Han, Y. Bando, K. Kurashima & T. Sato, “Boron-doped carbon nanotubes prepared through a substitution reaction”, Chem Phys Lett 299 (1999) 368. DOI: https://doi.org/10.1016/S0009-2614(98)01307-4

V. Perazzolo, E. Gradzka, C. Durante, R. Pilot, N. Vicentini, G.A. Rizzi, G. Granozzi & A. Gennaro, “Chemical and electrochemical stability of nitrogen and sulphur doped mesoporous carbons”, Electrochim Acta 197 (2016) 251. DOI: https://doi.org/10.1016/j.electacta.2016.02.025

J.P. Paraknowitsch & A. Thomas, “Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications”, Energy Env Sci 6 (2013) 2839. DOI: https://doi.org/10.1039/c3ee41444b

M.I. Ionescu, Y. Zhang, R. Li, H. Abou-Rachid & X. Sun, “Nitrogen-doping effects on the growth, structure and electrical performance of carbon nanotubes obtained by spray pyrolysis method”, Appl Surf Sci 258 (2012) DOI: https://doi.org/10.1016/j.apsusc.2012.01.028

M. Scardamaglia, M. Amati, B. Llorente, P. Mudimela, J.F. Colomer, J. Ghijsen, C. Ewels, R. Snyders, L. Gregoratti & C. Bittencourt, “Nitro- gen ion casting on vertically aligned carbon nanotubes: tip and sidewall chemical modification”. Carbon 77 (2014) 319. DOI: https://doi.org/10.1016/j.carbon.2014.05.035

J.F. Colomer, B. Ruelle, N. Moreau, S. Lucas, R. Snyders, T. Godfroid, C. Navio & C. Bittencourt, “Vertically aligned carbon nanotubes: synthesis and atomic oxygen functionalization”, Surf Coatings Technol 205 (2011) S DOI: https://doi.org/10.1016/j.surfcoat.2011.03.040

A. Lopez-Bezanilla, “Electronic and quantum transport properties of sub-stitutionally doped double-walled carbon nanotubes”, J Phys Chem C 118 (2014) 1472. DOI: https://doi.org/10.1021/jp410648p

E.N Nxumalo & N.J. Coville,“Nitrogen-doped carbon nanotubes from organometallic compounds: A review”, Mater 3 (2010) 2141. DOI: https://doi.org/10.3390/ma3032141

S. Van Dommele, A. Romero-Izquirdo, R. Brydson, K. De Jong & J. Bitter,“Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes” Carbon 46 (2008) 138. DOI: https://doi.org/10.1016/j.carbon.2007.10.034

C. Tang, Y. Bando, D. Golberg & F. Xu, “Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethyl- formamide”, Carbon 42 (2004) 2625. DOI: https://doi.org/10.1016/j.carbon.2004.05.047

T. Sugai, H. Yoshida, T. Shimada, T. Okazaki, H. Shinohara & S. Bandow, “New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge”, Nano Lett 3 (2003) 769. DOI: https://doi.org/10.1021/nl034183+

S. Dixit, S. Singhal, V. Vankar & A. Shukla, “Size-dependent Raman and absorption studies of single-walled carbon nanotubes synthesized by pulse laser deposition at room temperature”, Optical Mater 72 (2017) 612. DOI: https://doi.org/10.1016/j.optmat.2017.07.008

B. McLean, C.A. Eveleens, I. Mitchell, G.B. Webber & A.J. Page, “Catalytic CVD synthesis of boron nitride and carbon nanomaterials–synergies between experiment and theory”, Phys Chem Chem Phys 19 (2017) 26466. DOI: https://doi.org/10.1039/C7CP03835F

S.L. Pirard, S. Douven & J.P. Pirard, “Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapour deposition process”, Front Chem Sci Eng 11 (2017) 280. DOI: https://doi.org/10.1007/s11705-017-1635-1

M. Bansal, C. Lal, R. Srivastava, M. Kamalasanan & L. Tanwar, “Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method”, Phys B: Condens Matter 405 (2010) 1745. DOI: https://doi.org/10.1016/j.physb.2010.01.031

G.D Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R Oliver, T. Zimrin, A.J Hart, D. Aurbach & C.V Thompson, “Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapour through preheating of added oxygen”, Carbon 50 (2012) 4002. DOI: https://doi.org/10.1016/j.carbon.2012.04.043

G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons & H. Dai, “Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and

oxygen”, P Natl Aca Sci USA 102 (2005) 16141. DOI: https://doi.org/10.1073/pnas.0507064102

T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima & K. Hata, “Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts”, Nano Lett 8 (2008) 4288. DOI: https://doi.org/10.1021/nl801981m

K. Hasegawa & S. Noda, “Millimeter-tall single-walled carbon nanotubes are rapidly grown with and without water”, ACS Nano 5 (2011) 975-. DOI: https://doi.org/10.1021/nn102380j

Q. Wen, W. Qian, F. Wei, Y. Liu, G. Ning & Q. Zhang, “CO2-assisted SWNT growth on porous catalysts”, Chem Mater 19 (2007) 1226. DOI: https://doi.org/10.1021/cm062339b

L.M.Ombaka, P.G. Ndungu & V.O. Nyamori, “Tuning the nitrogen content and surface properties of nitrogen-doped carbon nanotubes synthesized using a nitrogen-containing ferrocenyl derivative and ethyl benzoate”, J Mater Sci 50 (2015) 1187. DOI: https://doi.org/10.1007/s10853-014-8675-4

M.H. Rümmeli, F. Schäffel, C. Kramberger, T. Gemming, A. Bachmatiuk, R.J Kalenczuk, B. Rellinghaus, B. Büchner & T. Pichler, “Oxide-driven carbon nanotube growth in supported catalyst CVD”, J Am Chem Soc

(2007) 15772.

J.B. In, C.P. Grigoropoulos, A.A. Chernov & A. Noy, “Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions”, ACS Nano 5 (2011) 9602. DOI: https://doi.org/10.1021/nn2028715

S. Sakurai, M. Yamada, K. Hata & D.N. Futaba, “Limitation in growth temperature for water-assisted single-wall carbon nanotube forest synthesis”, MRS Adv 3 (2018) 91. DOI: https://doi.org/10.1557/adv.2018.92

D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura & S. Iijima, “84% catalyst activity of water-assisted growth of single-walled carbon nanotube forest characterization by a statistical and

macroscopic approach”, J Phys Chem B 110 (2006) 8035. DOI: https://doi.org/10.1021/jp060080e

G.D. Nessim, A.J. Hart, J.S. Kim, D. Acquaviva, J. Oh, C.D. Morgan, M. Seita, J.S. Leib & C.V. Thompson, “Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment”,

Nano Lett 8 (2008) 3587. DOI: https://doi.org/10.1021/nl801437c

P.B. Amama, C.L. Pint, L. McJilton, S.M. Kim, E.A. Stach, P.T. Murray, R.H. Hauge & B. Maruyama, “Role of water in the super growth of single-walled carbon nanotube carpets”, Nano Lett 9 (2008) 44. DOI: https://doi.org/10.1021/nl801876h

W. Shi, J. Li, E.S. Polsen, C.R. Oliver, Y. Zhao, E.R. Meshot, M. Barclay, D.H. Fairbrother, A.J. Hart & D.L. Plata, “Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically

aligned carbon nanotubes”, Nanoscale 9 (2017) 5222. DOI: https://doi.org/10.1039/C6NR09802A

H.P. Boehm, “Surface oxides on carbon and their analysis: A critical assessment”, Carbon 40 (2002) 145. DOI: https://doi.org/10.1016/S0008-6223(01)00165-8

B. Petrova, B. Tsyntsarski, T. Budinova, N. Petrov, L.F. Velasco & C.O Ania, “Activated carbon from coal tar pitch and furfural for the removal of p-nitrophenol and m-aminophenol”, Chem Eng J 172 (2011) 102. DOI: https://doi.org/10.1016/j.cej.2011.05.075

P. He, Y. Du, S. Wang, C. Cao, X. Wang, G. Pang & Y. Shi, “Synthesis, Structure, and Reactivity of Ferrocenyl-NHC Palladium Complexes”, Z Anorg Allg Chem 639 (2013) 1004. DOI: https://doi.org/10.1002/zaac.201300097

A.H. Labulo, N.P. Ngidi, B. Omondi, V.O. Nyamori, “Physicochemical properties of nitrogen-doped carbon nanotubes from metallocenes and ferrocenyl imidazolium compounds”, J Organomet Chem 868 (2018) 66. DOI: https://doi.org/10.1016/j.jorganchem.2018.04.033

R.S. Oosthuizen & V.O. Nyamori, “Heteroatom-containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials”, Appl Organomet Chem 26 (2012) 536. DOI: https://doi.org/10.1002/aoc.2897

Q. Li, H. Pan, D. Higgins, R. Cao, G. Zhang, H. Lv, K. Wu, J. Cho & G. Wu, “Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocat-

alysts”, Small 11 (2015) 1443. DOI: https://doi.org/10.1002/smll.201402069

X. Zhao, F. Li, R. Wang, J.M. Seo, H.J. Choi, S.M. Jung, J. Mahmood, I.Y. Jeon & J.B Baek, “Controlled fabrication of hierarchically structured nitrogen-doped carbon nanotubes as a highly active bifunctional oxygen electrocatalyst”, Adv Funct Mater 27 (2017) 1605717. DOI: https://doi.org/10.1002/adfm.201605717

R. Zhang, Y. Zhang & F. Wei, “Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications”, Chem Soc Rev 46 (2017) 3661. DOI: https://doi.org/10.1039/C7CS00104E

B.G. Sumpter, J. Huang, V. Meunier, J.M. Romo-Herrera, E. Cruz-Silva, H. Terrones & M. Terrones, “A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants”, Int J Quantum Chem 109 (2009) 97. DOI: https://doi.org/10.1002/qua.21893

H. Okuyama, N. Iwata & H. Yamamoto, “Growth of vertically aligned carbon nanotubes depending on the thickness of catalyst films by plasma-enhanced chemical vapour deposition”, Mol Cryst Liq Cryst 472 (2007) DOI: https://doi.org/10.1080/15421400701547359

Ç. Öncel & Y. Yürüm, “Carbon nanotube synthesis via the catalytic CVD method: A review of the effect of reaction parameters”, Fuller Nanotub Car N 14 (2006) 17. DOI: https://doi.org/10.1080/15363830500538441

S.I. Yengejeh, S.A. Kazemi & A. Öchsner, “Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review”, Compos Part B: Eng 86 (2016) 95. DOI: https://doi.org/10.1016/j.compositesb.2015.10.006

L. Zhou, L.R. Enakonda, M. Harb, Y. Saih, A. Aguilar-Tapia, S. Ould-Chikh, J.L. Hazemann, J. Li, N. Wei, D. Gary & P. Del-Gallo, “Fe catalysts for methane decomposition to produce hydrogen and carbon nanomaterials”, Appl Catal B: Env 208 (2017) 44. DOI: https://doi.org/10.1016/j.apcatb.2017.02.052

E. Teblum, Y. Gofer, C.L. Pint & G.D. Nessim, “Role of catalyst oxidation state in the growth of vertically aligned carbon nanotubes”, J Phys Chem C 116 (2012) 24522. DOI: https://doi.org/10.1021/jp305169b

J. Wang, M.J. Shea, J.T. Flach, T.J. McDonough, A.J. Way, M.T. Zanni & M.S. Arnold, “Role of defects as exciton quenching sites in carbon nanotube photovoltaics”, J Phys Chem C 121 (2017) 8310. DOI: https://doi.org/10.1021/acs.jpcc.7b01005

W. Xia, “Interactions between metal species and nitrogen-functionalized carbon nanotubes”, Catal SciTechnol 6 (2016) 630. DOI: https://doi.org/10.1039/C5CY01694K

S,L. Rebelo, A. Guedes, M.E. Szefczyk, A.M. Pereira, J.P. Araújo & Freire C, “Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unravelling disorder in graphitic materials”,

Phys Chem Chem Phys 18 (2016) 12784. DOI: https://doi.org/10.1039/C5CP06519D

M.A. Pimenta, E. del Corro, B.R. Carvalho, C. Fantini & L.M. Malard, “Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides”, Acc Chem Res 48 (2014) 41. DOI: https://doi.org/10.1021/ar500280m

X. Zhang, W.P. Han, X.F. Qiao, Q.H. Tan, Y.F. Wang, J. Zhang & P.H. Tan, “Raman characterization of AB-and ABC-stacked few-layer graphene by interlayer shear modes”, Carbon 99 (2016) 118. DOI: https://doi.org/10.1016/j.carbon.2015.11.062

X.Y. Yang, J.J. Xu, Z.W. Chang, D. Bao, Y.B. Yin, T. Liu, J.M. Yan, D.P. Liu, Y. Zhang & X.B Zhang, “Blood-capillary-inspired, free-standing, flexible, and low-cost super-hydrophobic N-CNTs@ SS cathodes for high-

capacity, high-rate, and stable Li-ion batteries”, Adv Energy Mater 8 (2018) 1702242. DOI: https://doi.org/10.1002/aenm.201702242

S. Nie, W. Wu, Y. Pan, X. Dong, B. Li & D.Y. Wang, “Studies on intumescent flame retardant polypropylene composites based on biodegradable wheat straw”, Fire Mater. 42 (2018) 703. DOI: https://doi.org/10.1002/fam.2523

R. Rao, M. Yang, Q. Ling, C. Li, Q. Zhang, H. Yang & A. Zhang, “A novel route of enhancing oxidative catalytic activity: Hydroxylation of MWCNTs induced by sectional defects”, Catal Sci Technol 4 (2014) 665. DOI: https://doi.org/10.1039/C3CY00582H

A. Ameli, M. Arjmand, P. Pötschke, B. Krause & U. Sundararaj, “Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites.

Carbon 106 (2016) 260. DOI: https://doi.org/10.1016/j.carbon.2016.05.034

H. Liu, H. Hu, J. Wang, P. Niehoff, X. He, E. Paillard, D. Eder, M. Winter & J. Li, “Hierarchical ternary MoO2/MoS2/heteroatom-doped carbon hybrid materials for hig-performance lithium-ion storage”, Chem ElectroChem 3 (2016) 922. DOI: https://doi.org/10.1002/celc.201600062

H.R. Barzegar, E. Gracia-Espino, T. Sharifi, F. Nitze & T. Wågberg, “Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: impact on electronic properties and growth selectivity”, J Phys Chem C 117 (2013) 25805. DOI: https://doi.org/10.1021/jp409518m

B. Pal, S.S. Mallick & B. Pal, “Anisotropic CuO nanostructures of different size and shape exhibit thermal conductivity superior to typical bulk powder. Colloids Surf A: Physicochem Eng Asp 459 (2014) 282. DOI: https://doi.org/10.1016/j.colsurfa.2014.07.017

X. Peng, J. Jia, X. Gong, Z. Luan & B. Fan, “Aqueous stability of oxidized carbon nanotubes and the precipitation by salts”, J Hazard Mater 165 (2009) 1239. DOI: https://doi.org/10.1016/j.jhazmat.2008.10.049

N. Iqbal, X. Wang, J. Yu, N. Jabeen, H. Ullah & B. Ding, “In situ synthesis of carbon nanotube doped metal-organic frameworks for CO2 capture”, RSC Adv 6 (2016) 4382. DOI: https://doi.org/10.1039/C5RA25465E

Z. Huang, Z. Liao, W. Yang, H. Zhou, C. Fu, Y. Gong, L. Chen & Y. Kuang, “Different types of nitrogen species in nitrogen-doped carbon material: The formation mechanism and catalytic role on oxygen reduction reaction”, Electrochim Acta. 245 (2017) 957. DOI: https://doi.org/10.1016/j.electacta.2017.06.026

Z-H. Sheng, L. Shao, J-J. Chen, W-J. Bao, F-B. Wang & X-H. Xia, “Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis”, ACS Nano 5 (2011) 4350. DOI: https://doi.org/10.1021/nn103584t

G. Bepete, ZN. Tetana, S. Lindner, M.H. Rümmeli, Z. Chiguvare & N.J. Coville, “The use of aliphatic alcohol chain length to control the nitrogen type and content in nitrogen-doped carbon nanotubes”, Carbon 52 (2013).316. DOI: https://doi.org/10.1016/j.carbon.2012.09.033

T.E. Bell, G. Zhan, K. Wu, H.C. Zeng & L. Torrente-Murciano, “Modification of ammonia decomposition activity of ruthenium nanoparticles by N-doping of CNT supports”, Topics Catal 60 (2017) 1251. DOI: https://doi.org/10.1007/s11244-017-0806-0

J. Yu, Y. Zhong, W. Zhou & Z. Shao, “Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel-cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution”, J Power Sources 338 (2017) DOI: https://doi.org/10.1016/j.jpowsour.2016.11.023

T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin & N. Brown, “High-resolution XPS characterization of chemical functionalised MWC-NTs and SWCNTs”, Carbon 43 (2005) 153. DOI: https://doi.org/10.1016/j.carbon.2004.08.033

R. Ionescu, E.H. Espinosa, E. Sotter, E. Llobet, X. Vilanova, X. Correig, A. Felten, C. Bittencourt, G. Van Lier, J.C. Charlier & J.J. Pireaux, “Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers”, Sens Actuators B: Chem 113 (2006) 36. DOI: https://doi.org/10.1016/j.snb.2005.02.020

A. Sharma, K. Dasgupta, S. Banerjee, A. Patwardhan, D. Srivastava & J.B. Joshi, “In-situ nitrogen doping in carbon nanotubes using a fluidized bed reactor and hydrogen storage behaviour of the doped nanotubes”, Int J Hydrogen Energy 42 (2017) 10047. DOI: https://doi.org/10.1016/j.ijhydene.2017.01.160

Z. Li, R. Liu, Y. Xu & X. Ma, “Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid-treated N-doped CNTs”, Appl Surf Sci 347 (2015) 643. DOI: https://doi.org/10.1016/j.apsusc.2015.04.169

T.Fu, R. Liu, J. Lv & Z. Li, “Influence of acid treatment on N-doped multi-walled carbon nanotube supports for Fischer-Tropsch performance on cobalt catalyst”, Fuel Process Technol 122 (2014) 49. DOI: https://doi.org/10.1016/j.fuproc.2014.01.016

Published

2020-11-15

How to Cite

Labulo, A., Adesuji, E. T. ., Oseghale, C. O. ., Elias Emeka Elemike, Adamu Usman, Akinola Kehinde Akinola, & Enock Olugbenga Dare. (2020). Effect of benzophenone on the physicochemical properties of N-CNTs synthesized from 1-ferrocenylmethyl (2-methylimidazole) catalyst. Journal of the Nigerian Society of Physical Sciences, 2(4), 205–217. https://doi.org/10.46481/jnsps.2020.105

Issue

Section

Original Research

Most read articles by the same author(s)