Synthesis and Characterization of MnO2 nanoparticles mediated by Raphia hookeri seed

Authors

  • Bamidele H. Akpeji Department of Science Laboratory Technology, Federal University of Petroleum Resources, P.M.B 1221, Effurun, Delta State, Nigeria; Centre for Sustainable Development, Federal University of Petroleum Resources, P.M.B 1221, Effurun, Delta State, Nigeria
  • Bulouebibo Lari Department of Science Laboratory Technology, Delta State University, Abraka, Delta State, Nigeria
  • Ufuoma A. Igbuku Department of Chemistry, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
  • Godswill Tesi Department of Chemistry, Federal University of Petroleum Resources, P.M.B 1221, Effurun, Delta State, Nigeria
  • Elias E. Elemike Centre for Sustainable Development, Federal University of Petroleum Resources, P.M.B 1221, Effurun, Delta State, Nigeria; Department of Chemistry, Federal University of Petroleum Resources, P.M.B 1221, Effurun, Delta State, Nigeria
  • Paul O. Akusu Department of Petroleum and Natural Gas Processing, Petroleum Training Institute, Effurun, Delta State, Nigeria

Keywords:

Synthesis, Characterization, Nanoparticles, MnO2, Raphia hookeri seed

Abstract

In this study, managanese dioxide nanoparticles (MnO2-NP) was synthesized. Raphia hookeri seed was used as a bioreductant for the synthesis of MnO2-NPs. The biosynthesized MnO2-NPs was investigated for their reaction, structure and morphology. The MnO2-NPs was characterized using the UV-Visible spectrophotometry, Fourier Transform Infrared Spectrophotometry (FTIR), Energy Dispersive Spectrometry (EDX), Powdered X-ray Diffractometry (PXRD), Scanning electron microscpopy (SEM) and Transmission Electron Microscopy (TEM). UV-Visible spectra revealed that MnO2-NPs showed maximum 421nm respectively. FTIR results showed prominent reactive functional groups for hydroxyl (-OH) and carbonyl (-C=O). The EDX results revealed the elemental composition in percentages of the elements in the nanoparticles. PXRD revealled that the manganese dioxide nanoparticle is in a crystaline state. The morphology of the synthesized nanoparticle was found irregular and with porous surface for SEM. The average particle size of the nanoparticles as characterized by TEM was found to be 3.92 nm.

Dimensions

M. J. Haque, M. M. Bellah, M. R Hassan & S. Rahman, “Synthesis of ZnO nanoparticles by two different methods and comparison of their structural, antibacterial, photocatalytic and optical properties”, Nano Express 1 (2020) 010007. https://doi.org/10.1088/2632-959x/ab7a43.

E. E. Elemike, D. C. Onwudiwe & J. I. Mbonu, “Facile synthesis of cellulose–ZnO-hybrid nanocomposite using Hibiscus rosa-sinensis leaf extract and their antibacterial activities”, Applied Nanoscience 11 (2021) 1349. https://doi.org/10.1007/s13204-021-01774-y.

K. Brindhadevi, S. Vasantharaj, S. Devanesan, L. Xinghui & F. Karim, “Fabrication and characterization of manganese dioxide (MnO2) nanoparticles and its degradation potential of benzene and pyrene”, Chemosphere 343 (2023) 140123. https://doi.org/10.1016/j.chemosphere.2023.140123.

T. M. Abelneh, “Biosynthesis of Manganese Dioxide Nanoparticles and Optimization of Reaction Variables”, Journal of nanotechnology and nanomaterials 5 (2024) 31. https://doi.org/10.33696/Nanotechnol.5.052.

N. Penghui, Z. Yu & X. Hengyi “Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review”, Ecotoxicology and Environmental Safety 253 (2023) 114636. https://doi.org/10.1016/j.ecoenv.2023.114636.

S. Ahmed, M. Ahmad, B. L. Swami & S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise”, Journal of Advanced Research 7 (2016) 17. https://doi.org/10.1016/j.jare.2015.02.007.

R. L. Thimappa, K. K. Naveen, M. Venkataramana, D. M Chakrabhavi, R. Shobith, D. P. Bangari, S. A. Bagepalli, H. Abeer, A. Abdulaziz, A. M. Jahangir, F. A. Elsayed, K. G. Vijai, N. S. Chandra & R. N. Siddapura, “Biofabrication of Zinc Oxide Nanoparticles With Syzygium aromaticum Flower Buds Extract and Finding Its Novel Application in Controlling the Growth and Mycotoxins of Fusarium graminearum”, Frontiers in microbiology 10 (2019) 1244. https://doi.org/10.3389/fmicb.2019.01244.

H. Amir, H. Muhammad, U.K. Sana, K. Istikhar, A. Muhammad, & A. Naveed, “Lathyrus aphaca Extract MnO Nanoparticles: Synthesis, Characterization, and Photocatalytic Degradation of Methylene Blue Dye”, Photocatalysis: Research and Potential 3 (2024) 10004. https://doi.org/10.35534/prp.2024.10004.

S. Ghosh, P. More, R. Nitnavare, S. Jagtap, R. Chippalkatti, A. Derle, R. Kitture, A. Asok & S. Kale, “Dioscorea bulbifera mediated synthesis of novel Au core Ag shell nanoparticles with potent antibiofilm and antileishmanial activity”, Journal of Nanobiotechnology 10 (2012) 1. https://onlinelibrary.wiley.com/doi/10.1155/2015/562938.

V. Sekar, M. Balasubramanian, R. Palaniappan & V. Baskaralingam, “Assessment of biopolymer stabilized silver nanoparticle for their ecotoxicity on Ceriodaphnia cornuta and antibiofilm activity”, Journal of Environmental Chemical Engineering 4 (2016) 2076. https://doi.org/10.1016/j.jece.2016.03.036.

H. Mohammad, A. H. Hasan & E. Behrouz, “Fabrication of Manganese Dioxide Nanoparticles in Starch and Gelatin Beds: Investigation of Photocatalytic Activity”, Chemical Methodologies 8 (2024) 37. https://doi.org/10.48309/chemm.2022.424921.1739.

P. A. Oluyori, A. O. Dada & A. A. Inyinbor, “Phytochemical Analysis and Antioxidant Potential of Raphia hookeri leaf and Epicarp”, Oriental Journal of Chemistry 34 (2018) 6. http://dx.doi.org/10.13005/ojc/340608.

A. O. Okewale & B. H. Akpeji, “Green synthesis of zinc oxide nanoparticles (ZnONPs) from cassava leaf (Manihot esculenta) and its application as a corrosion inhibitor formild steel in 1M hydrochloric acid”, Journal of Engineering, Science, and Technology 6 (2022) 2714. https://www.researchgate.net/publication/373237707_APWEN_JOURNAL_VOLUME_6_ISSUE_1_1.

L. Haibin, Z. Xueyang, A. K. Shakeel, L. Wenqiang & W. Lei, “Biogenic Synthesis of MnO2 Nanoparticles With Leaf Extract of Viola betonicifolia for Enhanced Antioxidant, Antimicrobial, Cytotoxic, and Biocompatible Applications”, Frontiers in microbiology 12 (2021) 761084. https://doi.org/10.3389/fmicb.2021.761084.

M. A. Samy, A. A. Moustafa, E. H. Elsayed, I. R. Entsar & D. G. Aseel “Biosynthesis and Characterization of Silver Nanoparticles Produced by Plant Extracts and Its Antimicrobial Activity”, South Asian Journal of Research in Microbiology 3 (2019) 1. https://doi.org/10.9734/sajrm/2019/v3i130077.

K. M Harish & S. Poonam, “Synthesis and Characterization of MnO2 Nanoparticles using Co-precipitation Technique”, International Journal of Chemistry and Chemical Engineering 3 (2013) 155. https://www.ripublication.com/ijcce_spl/ijccev3n3spl_05.pdf.

L. Hairui, K. Peipei, L. Ying, A. Yifan, H. Yanting, J. Xiyuan, C. Xin, Q. Yunfei, T. Ramesh & W. Xiao, “Zinc oxide nanoparticles synthesized from the Vernonia amygdaline shows the anti-inflammatory and antinociceptive activities in the mice model”, Artificial Cells, Nanomedicine and Biotechnology 48 (2020) 1068. https://doi.org/10.1080/21691401.2020.1809440.

L. Li, Y. Pan, L. Chen & G. Li, “One-dimensional ?-MnO2: trapping chemistry of tunnel structures, structural stability, and magnetic transitions”, Solid State Chem. 180 (2007) 2896. https://doi.org/10.1016/j.jssc.2007.08.017

L. Kang, M. Zhang, Z. H. Liu & K. Ooi, “IR spectra of manganese oxides with either layered or tunnel structures”, Spectrochim Acta A Mol Biomol Spectrosc 67 (2007) 864. https://doi.org/10.1016/j.saa.2006.09.001.

P. G. Tratnyek & R. L. Johnson, “Nanotechnologies for environmental cleanup”, Nano today 1 (2006) 44. http://dx.doi.org/10.1016/S1748-0132(06)70048-2.

K. Prabhat, K. Jaspinder & K. T. Anurag, “Synthesis and Characterization of Manganese dioxide Agglomerated Nanoparticles for Supercapacitor Application”, International Conference on Materials Science and Engineering 1248 (2022) 012052. http://doi.org/10.1088/1757-899X/1248/1/012052.

Flow diagram for the extraction and phytochemical screening of Raphia hookeri seed

Published

2024-09-08

How to Cite

Synthesis and Characterization of MnO2 nanoparticles mediated by Raphia hookeri seed. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2203. https://doi.org/10.46481/jnsps.2024.2203

How to Cite

Synthesis and Characterization of MnO2 nanoparticles mediated by Raphia hookeri seed. (2024). Journal of the Nigerian Society of Physical Sciences, 6(4), 2203. https://doi.org/10.46481/jnsps.2024.2203