Synergistic Study of Reduced Graphene Oxide as Interfacial Buffer Layer in HTL-free Perovskite Solar Cells with Carbon Electrode

Authors

  • Sherifdeen O. Bolarinwa Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • Eli Danladi Nigerian Defence Academy, Kaduna
  • Andrew Ichoja Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
  • Muhammad Y. Onimisia Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • Christopher U. Achem Centre for Satellite Technology Development-NASRDA, Abuja, Nigeria

Keywords:

Perovskite Solar Cells, Reduced Graphene Oxide, buffer layer, HTM

Abstract

The application of machine learning algorithms to the detection of fraudulent credit card transactions is a challenging problem domain due to the high imbalance in the datasets and confidentiality of financial data. This implies that legitimate transactions make up a high majority of the datasets such that a weak model with 99% accuracy and faulty predictions may still be assessed as high-performing. To build optimal models, four techniques were used in this research to sample the datasets including the baseline train test split method, the class weighted hyperparameter approach, and the undersampling and oversampling techniques. Three machine learning algorithms were implemented for the development of the models including the Random Forest, XGBoost and TensorFlow Deep Neural Network (DNN). Our observation is that the DNN is more efficient than the other 2 algorithms in modelling the under-sampled dataset while overall, the three algorithms had a better performance in the oversampling technique than in the undersampling technique. However, the Random Forest performed better than the other algorithms in the baseline approach. After comparing our results with some existing state-of-the-art works, we achieved an improved performance using real-world datasets.

Dimensions

Z. Qu, F. Ma, Y. Zhao, X. Chu, S. Yu & J. You, “Updated progresses in perovskite solar cells”, Chinese Physics Letters 38 (2021) 107801.

S. Suragtkhuu, O. Tserendavag, U. Vandandoo, A. S. R. Bati, M. Bat-Erdene, J. G. Shapter, M. Batmunkh & S. Davaasambuu, “Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite”, RSC Advances 10

(2020) 9133.

J. Duan, H. Xu, W. E. I. Sha, Y. Zhao, Y. Wang, X. Yang & Q. Tang, “Inorganic perovskite solar cells: an emerging member of the photovoltaic community”, Journal of Materials Chemistry A 7 (2019) 21036

H.Wang, X. Liang, J.Wang, S. Jiao&D. Xue, “Multifunctional inorganic nanomaterials for energy applications”, Nanoscale 12 (2020) 14.

Q. Guo, F. Yuan, B. Zhang, S. Zhou, J. Zhang, Y. Bai, L. Fan, T. Hayat, A. Alsaedi & Z. Tan, “Passivation of the grain boundaries of CH3NH3PbI3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability”, Nanoscale 19 (2019) 115.

M. Batmunkh, K. Vimalanathan, C. Wu, A. S. R. Bati, L. Yu, S. A. Tawfik, M. J. Ford, T. J. Macdonald, C. L. Raston, S. Priya, C. T. Gibson & J. G. Shapter, “Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells”, Small Methods 3 (2019) 1800521.

J. D. Chen, T. Y. Jin, Y. Q. Li & J. X. Tang, “Recent progress of light manipulation strategies in organic and perovskite solar cells”, Nanoscale 11 (2019) 18517.

G. Mathiazhagan, L. Wagner, S. Bogati, K. Y. Unal, D. Bogachuk, T. Kroyer, S. Mastroianni, & A. Hinsch, “Double-mesoscopic hole-transport-material-free perovskite solar cells: overcoming charge-transport limitation by sputtered ultrathin Al2O3 isolating layer”, ACS Applied Nano Materials 3 (2020) 2463.

L. Wagner, S. Chacko, G. Mathiazhagan, S. Mastroianni & A. Hinsch, “High photovoltage of 1 V on a steady-state certified hole transport layer-free perovskite solar cell by a molten-salt approach”, ACS Energy Letters 3 (2018) 1122.

E. Danladi, M. Y. Onimisi, S. Garba & J. Tasiu, “9.05 % HTM free perovskite solar cell with negligible hysteresis by introducing silver nanoparticles encapsulated with P4VP Polymer”, SN Applied Sciences 2 (2020) 1769.

M. Saliba, T. Matsui, K. Domanski, J. Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt & M. Gratzel, “Incorporation of rubidium cations into perovskite solar cells improve photovoltaic performance”, Science 354 (2016) 206.

G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. D. Angelis, M. Graetzel & M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering”, Nature Communications 8 (2017) 15684.

X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin & M. Gratzel, “Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics”, Energy Technology 3 (2015) 551.

T. Y. Yang, N. J. Jeon, H. W. Shin, S. S. Shin, Y. Y. Kim & J. Seo, “Achieving long-term operational stability of perovskite solar cells with a stabilized efficiency exceeding 20% after 1000 h”, Advanced Science 6 (2019) 1900528.

J. Chen, X. Cai, D. Yanga, D. Song, J.Wang, J. Jiang, A. Ma, S. Lv, M. Z. Hu & C. Ni, “Recent progress in stabilizing hybrid perovskites for solar cell applications”, Journal of Power Sources 355 (2017) 98.

C. Zhi, Z. Li & B. Wei, “Recent progress in stabilizing perovskite solar cells through two-dimensional modification”, APL Materials 9 (2021) 070702.

H. Choi, K. Choi, Y. Choi, T. Kim, S. Lim & T. Park, “A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives, small methods”, Small methods (Special Section: Perovskite Solar Cells) 4

(2020) 1900569.

D. Kim, K. Higgins & M. Ahmadi, “Navigating grain boundaries in perovskite solar cells”, Matter 4 (2021) 1442.

M. Que, B. Zhang, J. Chen, X. Yin & S. Yun, “Carbon-based electrodes for perovskite solar cells”, Materials Advances 2 (2021) 5560.

D. Bogachuk, B. Yang, J. Suo, D. Martineau, A. Verma, S. Narbey, M. Anaya, K. Frohna, T. Doherty, D. M¨uller, J. P. Herterich, S. Zouhair, A. Hagfeldt, S. D. Stranks, U. W¨urfel, A. Hinsch & L. Wagner, “perovskite solar cells with carbon-based electrodes – quantification of

losses and strategies to overcome them”, Advanced Energy Materials 12 (2022) 2103128.

M. Hadadian J. H. Smått & J. P. Correa-Baena, “The role of carbonbased materials in enhancing the stability of perovskite solar cells”, Energy and Environmental Science 13 (2020) 1377.

K. Moore & W. Wei, “Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion”, Nano Materials Science 13 (2021) 276.

E. Nouri Y. L.Wang Q. Chen J. J. Xu G. Paterakis, V. Dracopoulos, Z. X. Xu, D. Tasis, M. R. Mohammadi & P. Lianos, “Introduction of graphene oxide as buffer layer in perovskite Solar cells and the promotion of soluble n-Butyl-substituted copper phthalocyanine as efficient hole transporting material”, Electrochimica Acta 233 (2017) 36.

E. Nouri, M. R. Mohammadi, Z. X. Xu, V. Dracopoulos & P. Lianos, “Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter”, Physical Chemistry Chemical

Physics 20 (2018) 2388.

K. Gong, J. Hu, N. Cui, Y. Xue, L. Li, L. Long & S. Lin, “The roles of graphene and its derivatives in perovskite solar cells: A review”, Materials & Design 211 (2021) 110170.

E. Kusrini, I. Ramadhani, M. I. Alhamid, N. Y. Voo & A. Usman, “Synthesis and adsorption performance of graphene oxide-polyurethane sponge for oil-water separation”, Engineering Journal 26 (2022) 1.

G. Santamar´?a-Ju´arez, E. G´omez-Barojas, E. Quiroga-Gonz´alez, E. S´anchez-Mora, M. Quintana-Ruiz & J. D. Santamar´?a-Ju´arez, “Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield”, Materials Research Express 6 (2020) 125631.

W. S. Hummers & R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American chemical society 80 (1958) 1339.

K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate & H. J. Snaith, “sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency”, Energy Environment Science 7 (2014) 1142.

L. Zhang, T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei & H. Han, “The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells”, Journal of Materials Chemistry A 3 (2015) 9165.

K. Bansal, J. Singh & A. S. Dhaliwal, “Synthesis and characterization of Graphene Oxide and its reduction with different reducing agents”, IOP Conference Series: Materials Science and Engineering 1225 (2022) 012050.

K. Tsirka, A. Katsiki, N. Chalmpes, D. Gournis & A. S. Paipetis, “Mapping of graphene oxide and single layer graphene flakes-defects annealing and healing”, Frontiers in Materials 5 (2018) 37.

V. Scardaci & G. Compagnini, “Raman spectroscopy investigation of graphene oxide reduction by laser scribing”, Journal of Carbon research 7 (2021) 48.

A. Ferrari & J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B 61 (2000) 14095.

Y. Shen & A. C. Lua, “A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst”, Scientific Reports 3 (2013) 1.

P. Basumatary & P. Agarwal, “Photocurrent transient measurements in MAPbI3 thin films”, Journal of Materials Science: Materials in Electronics 31 (2020) 10047.

E. Danladi, M. Y. Onimisi, S. Garba, P. M. Gyuk, T. Jamila & H. P. Boduku, “Improved power conversion efficiency in perovskite Solar cell using silver nanoparticles modified photoanode”, IOP Conference Series: Material Science and Engineering 805 (2020) 012005.

G.Wang, J. Yang, J. Park, X. Gou, B.Wang, H. Liu & J. Yao, “Facile synthesis and characterization of graphene nanosheets”, Journal of Physical Chemistry C 112 (2008) 8192.

G. Volonakis & F. Giustino, “Ferroelectric graphene-perovskite interfaces”, Journal of Physical Chemistry Letters 6 (2015) 2496.

Published

2022-08-17

How to Cite

Synergistic Study of Reduced Graphene Oxide as Interfacial Buffer Layer in HTL-free Perovskite Solar Cells with Carbon Electrode. (2022). Journal of the Nigerian Society of Physical Sciences, 4(3), 909. https://doi.org/10.46481/jnsps.2022.909

Issue

Section

Original Research

How to Cite

Synergistic Study of Reduced Graphene Oxide as Interfacial Buffer Layer in HTL-free Perovskite Solar Cells with Carbon Electrode. (2022). Journal of the Nigerian Society of Physical Sciences, 4(3), 909. https://doi.org/10.46481/jnsps.2022.909